TSKS01 DIGITAL COMMUNICATION

Repetition and Examples

SIGNALS AND SYSTEMS

Signals and Systems

Signals: Voltages, currents, or other measurements

Systems: Manipulate/filter signals

Energy-free system: No transients, constant input → constant output

Complex exponential: $e^{j2\pi ft} = \cos(2\pi ft) + j\sin(2\pi ft)$

Unit step: $u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$

Unit impulse: $\delta(t)$: $\int_{-\infty}^{\infty} x(t) \, \delta(t) \, dt = x(0)$

Linear Systems

Definition: Let $x_1(t)$ and $x_2(t)$ be input signals to a one-input energy-free system, and let $y_1(t)$ and $y_2(t)$ be the corresponding output signals. If

$$y(t) = a_1 y_1(t) + a_2 y_2(t)$$

is the output corresponding to the input

$$x(t) = a_1 x_1(t) + a_2 x_2(t),$$

for any $x_1(t)$, $x_2(t)$, a_1 , and a_2 , then the system is referred to as *linear*. A system that is not linear is referred to as *non-linear*.

$$a_1x_1(t) + a_2x_2(t)$$
 Linear system $a_1y_1(t) + a_2y_2(t)$

Linear Systems – Example 1

Is the system y(t) = x(t-1) linear?

• Consider $x(t) = a_1 x_1(t) + a_2 x_2(t)$

• Then: $y(t) = a_1x_1(t-1) + a_2x_2(t-1) = a_1y_1(t) + a_2y_2(t)$

Linear combination of outputs of $x_1(t)$ and $x_2(t)$: **Linear system**

Linear Systems – Example 2

Is the system $y(t) = (x(t))^2$ linear?

• Consider $x(t) = a_1 x_1(t) + a_2 x_2(t)$

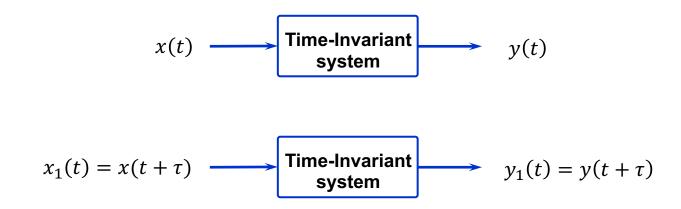
- Then: $y(t) = (a_1x_1(t) + a_2x_2(t))^2$ = $a_1^2x_1^2(t) + a_2^2x_2^2(t) + 2a_1a_2x_1(t)x_2(t)$
- Different from $a_1y_1(t) + a_2y_2(t) = a_1x_1^2(t) + a_2x_2^2(t)$

Not a linear combination of outputs of $x_1(t)$ and $x_2(t)$: **Non-linear**

Time-Invariant System

Time-invariant system

Definition: Let x(t) be the input to an energy-free system and let y(t) be the corresponding output. If $y(t + \tau)$ is the output for the input $x(t + \tau)$ for any x(t), t, and τ , then the system is referred to as *time-invariant*. Otherwise the system is referred to as *time-varying*.



Time-Invariant System - Example

Is the system y(t) = x(t-1) time-invariant?

$$x_1(t) = x(t+\tau)$$
 Time-Invariant system $y_1(t) = y(t+\tau)$

- True output: $y_1(t) = x_1(t-1) = x(t+\tau-1)$
- Output if time-invariant: $y(t + \tau) = x(t + \tau 1)$
- Since $y_1(t) = y(t + \tau)$: Time-invariant

Is the system $y(t) = \cos(2\pi f t)x(t)$ time-invariant?

- True output: $y_1(t) = \cos(2\pi f t) x_1(t) = \cos(2\pi f t) x(t + \tau)$
- Output if time-invariant: $y(t + \tau) = \cos(2\pi f(t + \tau))x(t + \tau)$
- Since $y_1(t) \neq y(t + \tau)$: Time-varying

Linear Time-Invariant (LTI) Systems

LTI system

Definition: A system that is both linear and time-invariant is referred to as a *linear time-invariant (LTI) system*.

Example:
$$y(t) = x(t-1)$$
 is an *LTI* system

Property: The input and output of LTI systems are related as

$$x(t) \longrightarrow h(t) \qquad y(t) = (x * h)(t) Y(f) = X(f)H(f)$$

