Linköpings universitet Dept. of Science and Technology Michael Hörnquist

Modern Physics, TNE046

Exam, 20 March 2023, Answers and short solutions

- (a) False (should be squared). True. The corresponding wave equations consistent with special relativity are the Dirac equation and the Klein-Gordon eguation. General relativity is not yet united with QM at all. False (increases to 4). False (1000 times too much, should be a few eV).
 (b) The photoelectric equation can be written hc/λ-φ = K, where φ = 4,26eV is the work function for silver (PH 8.1) and K is the kinetic energy the potential difference should match. The particles are electrons, so the energy becomes eV, which gives us V = 0,70V.
- 2. The conservation laws critical here are the conservation of energy and the conservation of momentum. For energy: $p_{\text{photon}}c = \gamma_u m_e c^2 + \gamma_u m_p c^2$. For momentum (in the direction of the incomming photon): $p_{\text{photon}} = \gamma_u m_e u \cos \theta + \gamma_u m_p u \cos(-\theta)$. With $m_p = m_e$ and dividing the two equations one obtains $\cos \theta = c/u$ which is impossible since $\cos \theta \leq 1$ and c/u > 1.
- 3. (a) Only when E < 0 is the particle truly confined to the well in this assignment, else there is always due to the tunnel effect at least a slight probability it will escape. (b) Regardless of energy, the particle is more confined within $-a \le x \le a$ than a particle in a zero potential. Even with $E > V_0$ the particle might be refleced at the walls at $\pm a$.
- 4. (a) Both terms correspond to the energy-value $E_3 = me^4/(8\epsilon_0^2h^2) \cdot 1/3^2$. The time-dependence is given by the same exponential factor for both states, which becomes $\Psi(r,\theta,\phi,t) = \psi(r,\theta,\phi)e^{-i\omega t}$ with $\omega = E_3/\hbar$. (b) In spherical coordinates, the volume is given by $0 \le \theta \le \pi/2$. The probability becomes then

$$\int_0^\infty \int_0^{\pi/2} \int_0^{2\pi} |R(r)|^2 \frac{1}{\sqrt{5}} \left(Y_{22}^*(\theta,\phi) + 4Y_{20}^*(\theta,\phi) \right) \frac{1}{\sqrt{5}} \left(Y_{22}(\theta,\phi) + 4Y_{20}(\theta,\phi) \right) r^2 \sin\theta \, d\phi \, d\theta \, dr.$$

The functions can be taken from PH 6.4. The radial part integrates to unity by construction, while the ϕ -dependence parts of the mixed spherical harmonics integrate to zero. The whole expression turns into

$$2\pi \frac{1}{5} \frac{15}{32\pi} \int_0^{\pi/2} \sin^5 \theta \, d\theta + 2\pi \frac{4}{5} \frac{5}{16\pi} \int_0^{\pi/2} (3\cos^2 \theta - 1)^2 \sin \theta \, d\theta = 1/10 + 4/10 = 1/2.$$

- 5. The usual 1D infinite well has $E = n^2 \left(\pi^2 \hbar^2 / (2m_e L^2) \right)$. Solving for n yields $n = \sqrt{2m_e} L / (\pi \hbar) \sqrt{E}$ and from here directly since we are in one-dimension $D(E) = dn/dE = \sqrt{2m_e} L / (\pi \hbar) \cdot 1 / (2\sqrt{E})$. But we have electrons, spin must be taken into account, so each energy-level is two-fold degenerate, i.e., $D(E) = dn/dE = \sqrt{2m_e} L / (\pi \hbar) \cdot 1 / \sqrt{E}$.
- 6. (a) The energy of such a photon must exceed hc/λ , which implies $\lambda_{\max} \leq hc/E_g = 886$ nm. (b) The effective mass is the ratio of the *external* force to the acceleration. In the one-dimensional case, which is what we have treated in the course, it is defined as $m_{\text{eff}} = \hbar^2/(d^2E/dk^2)$. For an electron in the free-electron-model we have $E = \hbar^2 k^2/(2m_e)$, which gives $m_{\text{eff}} = m_e$.