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1. (a) False (should be squared). True. The corresponding wave equations consistent with special
relativity are the Dirac equation and the Klein-Gordon eguation. General relativity is not yet
united with QM at all. False (increases to 4). False (1000 times too much, should be a few eV).
(b) The photoelectric equation can be written hc/λ−ϕ = K, where ϕ = 4, 26eV is the work function
for silver (PH 8.1) and K is the kinetic energy the potential difference should match. The particles
are electrons, so the energy becomes eV , which gives us V = 0, 70V.

2. The conservation laws critical here are the conservation of energy and the conservation of momen-
tum. For energy: pphotonc = γumec

2 + γumpc
2. For momentum (in the direction of the incomming

photon): pphoton = γumeu cos θ + γumpu cos(−θ). With mp = me and dividing the two equations
one obtains cos θ = c/u which is impossible since cos θ ≤ 1 and c/u > 1.

3. (a) Only when E < 0 is the particle truly confined to the well in this assignment, else there is
always due to the tunnel effect at least a slight probability it will escape. (b) Regardless of energy,
the particle is more confined within −a ≤ x ≤ a than a particle in a zero potential. Even with
E > V0 the particle might be refleced at the walls at ±a.

4. (a) Both terms correspond to the energy-value E3 = me4/(8ϵ20h
2) · 1/32. The time-dependence is

given by the same exponential factor for both states, which becomes Ψ(r, θ, ϕ, t) = ψ(r, θ, ϕ)e−iωt

with ω = E3/ℏ. (b) In spherical coordinates, the volume is given by 0 ≤ θ ≤ π/2. The probability
becomes then∫ ∞
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The functions can be taken from PH 6.4. The radial part integrates to unity by construction, while
the ϕ-dependence parts of the mixed spherical harmonics integrate to zero. The whole expression
turns into
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(3 cos2 θ − 1)2 sin θ dθ = 1/10 + 4/10 = 1/2.

5. The usual 1D infinite well has E = n2
(
π2ℏ2/(2meL

2)
)
. Solving for n yields n =

√
2meL/(πℏ)

√
E

and from here directly since we are in one-dimension D(E) = dn/dE =
√
2meL/(πℏ) · 1/(2

√
E).

But we have electrons, spin must be taken into account, so each energy-level is two-fold degenerate,
i.e., D(E) = dn/dE =

√
2meL/(πℏ) · 1/

√
E.

6. (a) The energy of such a photon must exceed hc/λ, which implies λmax ≤ hc/Eg = 886nm. (b)
The effective mass is the ratio of the external force to the acceleration. In the one-dimensional case,
which is what we have treated in the course, it is defined as meff = ℏ2/(d2E/dk2). For an electron
in the free-electron-model we have E = ℏ2k2/(2me), which gives meff = me.
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