
Monte Carlo Simulations

The terminology “Monte Carlo”

method addresses a wide range of problem
solving techniques by using random numbers and the statistics of

probability.

Name is indeed taken after the casino in the small Monegasque municipality,
where every game relies upon random events (roulette, dice etc).

One can then name, in principle, any method which uses random numbers to
solve a problem a Monte Carlo method.

Classical Monte Carlo (CMC)

–

used to obtain samples from a probability
distribution to determine, for example, energy minimum structures.

Quantum Monte Carlo (QMC)

–

random walks can be used to determine
quantum-mechanical energies.

Path-Integral Monte Carlo (PMC)

–

thermodynamics properties can be
evaluated from quantum statistical mechanical integrals.

Simulation Monte Carlo (SMC)

–

algorithms used to evolve configurations
based on various acceptance rules.

Monte Carlo usage in Science

In Molecular Dynamics, properties are evaluated by tracking

them over time.
For a given microscopic state, macroscopic properties are calculated as time
averages.

These time averages, however, include only the states which

occur during the
time scale of the MD simulation. Several important issues arise:

1. The length of the MD run is finite (eg. 10s or 100s of ns), and there may be
processes/excitations which occur over longer times which would not be included
in the MD time averages.

2. One needs to calculate properties averages, but there might not be interest
in simulating, or knowledge of, the actual system dynamics (eg. a spin model).
A considerably less demanding technique (CPU-wise) can be used to do the job.

In both cases, statistical sampling could be the better method, or MC.

Molecular Dynamics or Monte Carlo

Monte Carlo is NOT another form of dynamics.

Monte Carlo is a SAMPLING method.

The two most important aspects to be decided in Monte Carlo approaches are:

1. WHICH POPULATION TO SAMPLE FROM.
One needs to impose some constraints on the population of states

sampled.

2. WITH WHAT PROBABILITY TO SAMPLE.
Biased or unbiased sampling can make a huge difference in efficiency.

What to sample?

The statistical ensemble gives the group of states over which one samples.

MICROSCOPIC
(atoms, electrons)

MACROSCOPIC
Thermodynamics

STATISTICAL

MECHANICS
Sample with Constraints Fixed Variables

Macroscopic conditions (constant V, T, N) translate as boundary conditions,
or constraints, in the microscopic universe.

Microscopic systems are then defined by the fixed thermodynamic variables
in the macroscopic world (NVE), (NVT), (NPT) etc.

There are two types of thermodynamic variables:

Extensive variables

–

scale with size of system (V, N).

Intensive variables

–

don’t scale with size (T, P,)

Intensive variables are the conjugates of extensive variables.

The constraint used to sample the microscopic system is set by
the fixed extensive thermodynamic variable.

The sampling probability depends on the relevant Hamiltonian.

The Hamiltonian in microscopic space corresponds to the
free energy function in macroscopic space.

The conjugate, extensive and intensive variables, always “work”

in pairs.

First law of thermodynamics, in the energy formulation, yields for the work
terms, using the conjugate pairs:

 ...dNPdVTdSdU

S is extensive, T is intensive; TdS (heat flow term)
V is extensive, P is intensive; PdV (mechanical work done term)
N is extensive,

is intensive; dN (chemical work term)

One needs to always specify at least one variable for each pair of conjugate
variables:

constant S or constant T
constant V or constant P
constant N or constant

This is how the constraints for the microscopic systems are defined.

This is also how the so-called valid thermodynamic ensembles are constructed.

In MC, thermodynamic quantities are averages over relevant set (population)
of microscopic states (ensembles).

(NVE) –

microcanonical ensemble
(NVT) –

canonical ensemble
(VT) –

grand-canonical ensemble
(NPT) –

isothermal-isobaric ensemble

Ensemble is the collection of all possible microscopic states
the system can be in, for a given macroscopic condition.

This defines the population of states, including relevant
constraints, which must be sampled in MC simulations.

As ensembles are determined by the extensive variables kept

constant, the
simplest one to construct is the (NVE) microcanonical ensemble.

It is ideally suited for Newtonian mechanics in a system closed in a box.
If the box is closed, N cannot change, the volume is again fixed, and in the case
of Newtonian dynamics, the energy is fixed as well.

This is the reason why the (NVE) ensemble is the most natural ensemble for
MD simulations. However, this is not the case in MC, where particle momenta
are not involved.

How to sample?
The probability of states in any ensemble is proportional to e–H, where H is the
Hamiltonian and

= 1/kB

T.

 Hexp~p

This probability has to be normalized by the partition function Z, which is
the sum of probabilities over all states

in the ensemble:

)Hexp(Z
Z

)Hexp(
)Hexp(

)Hexp(p

p

, called the probability distribution function (PDF), yields in this manner the
correct probability to sample essentially in any ensemble, provided one knows H.

The microscopic H should include everything that fluctuates in the system. Its
correct form can be obtained by taking a Legendre transformation

of the entropy
of the system (H is essentially a Legendre transform), obtained from 1st

law:

...dN
T

dV
T
PdU

T
1dS

Note the conjugate pairs in the entropy formulation: (1/T, U), (–

P/T, V), (/T, N).

The Hamiltonian, which corresponds to the relevant free energy function

in
macroscopic space, can be obtained for each microscopic ensemble.

Canonical Ensemble (NVT)

First law becomes: dE
T
1dS 0E

T
1Sd

 or

the relevant free energy is F = E –

TS, which is the Helmholtz free energy,
and the Legendre transform of entropy yields: –F/T = S –

E/T.

The Hamiltonian will thus contain only the –

E/T term, and the PDF for the
canonical (NVT) ensemble takes the following form:

)Eexp(

)Eexp(pNVT

Isothermal-Isobaric Ensemble (NPT)

First law becomes: dV
T
PdE

T
1dS 0V

T
PE

T
1Sd

 or

The free energy in this case is:
F = E –

TS + PV
and the Legendre transform of entropy takes the form:

–F/T = S –

E/T –

PV/T.
From this, only the –

(E + PV)/T term is taken in the Hamiltonian
and the PDF for the isothermal-isobaric (NPT) ensemble becomes:

 PVEexp

PVEexppNPT

Grand-canonical Ensemble (VT)

First law becomes: dN
T

dE
T
1dS

 0N
T

E
T
1Sd

or

The free energy for fixed (,V,T) becomes:
F = E

TS N
and the Legendre transform of entropy for this ensemble is:

–F/T = S –

E/T + N/T.
Again, from this one takes only the –

(E N)/T term in the Hamiltonian
and the PDF for the isothermal-isobaric (VT) ensemble becomes:

 NEexp

NEexpp VT

Monte Carlo Integration

Originally, Monte Carlo was used as an integration method. Typically, the
scheme for integrating a function F(x), consisted in:

f(x)

-

randomly obtain values of x below curve.

-

determine value of f for that x.

-

accumulate a sum of these values.

-

divide the sum by number of trials to
obtain the average.

The procedure was easily extended to functions of two variables and multiple
integrals. It is called SIMPLE SAMPLING.

N

i
iest)x(f

N
1I

Simple Sampling in MC (Simple MC)

The aim in MC simulations is to calculate average thermodynamic properties,
<A(rN)>, which can be done by evaluating multidimensional integrals over the
3N degrees of freedom in an N particle system:

 NNNN dr)r(p)r(A)r(A

where p(rN) is the appropriate PDF in the respective ensemble.
Here, one can concentrate on the (NVT) ensemble for two reasons:

1. ALL OTHER ENSEMBLES follow the same rational/approach as in (NVT).

2. The NVT ensemble is the natural choice for MC simulations.
In MD, Newton’s EOM lead naturally to energy conservation, hence the NVE

selection.
In MC, until recently, it was not possible to perform calculations in the NVE

ensemble due to the absence of kinetic energy. Temperature, however, can be
easily kept constant in the PDF, and the NVT-MC is simplest to implement.

Simple Sampling in MC (Simple MC)

As shown, the PDF in the NVT ensemble takes the form:

Ndr)Nr(Eexp

)Nr(Eexp
)Nr(p

These integrals cannot be evaluated analytically or numerically.

Typical schemes
for 3N-dimensional integrals require m3N

function evaluations, where m is the
number of points required to evaluate the integral in each dimension.

In simple MC, a large number of trial configurations rN

are generated and the
integrals are replaced by summations over a finite number of configurations:

trial

trial

N

1i

N
i

N

1i

N
i

N
i

N

)r(Eexp

)r(Eexp)r(A
)r(A

Simple Sampling in MC (Simple MC)

With simple sampling, each trial configuration rN

corresponds to a randomly
chosen state (point) . If one randomly picks M states, they need to be weighted
with the correct probability p

:

M

1
ApA

NVTM
M

1

Z
)Eexp(

)Eexp(

)Eexp(p

Simple sampling does not work. The reason is states are picked essentially in
proportion to their degeneracy. The higher the energy, the more states at that
energy. One samples a great number of states but not the relevant ones.

This random, unbiased sampling of states yields too many configurations with
low weight, or very small Boltzmann factor, which make very little contribution
to the average which needs to be calculated.

One needs to bias the sampling method: IMPORTANCE SAMPLING.

Importance Sampling

f(x)

N

i
iest)x(f

N
1I

N

i
iiest)x(p)x(fI

Simple Sampling

Importance Sampling

In importance sampling points are chosen according to the anticipated importance
of the value to the function (contribution it makes) and weighted by the inverse of
the probability of choice.

The difference is that in importance sampling one no longer uses

a simple average
of all points sampled. In importance sampling the sampling is biased by the use of
a weighted average.

Importance Sampling

In MC, importance sampling translates into biasing the sampling towards the
important, relevant, low energy states.

In other words, one picks states with a probability proportional to exp(E),
instead of randomly picking them and weighing them later by a probability.

M

1 M

1

A
)Eexp(

EexpA

M

1
AA

Random sample Probability weighted sample

If one has to calculate properties for which high energies are needed, sampling
could be biased for those states.

Relevant thermodynamic ensembles fluctuate around states with low energy,
so importance sampling is used in MC to sample mostly these states.

Markov Chains

Used to construct probability weighted samples.

A Markov chain is a sequence of trials in which the outcome

of successive
trials depends only on the immediately preceding trial.

The procedure ensures that one “walks”

through the phase space and “visit”
each state with proper probability.

In Markov chains, a new state is accepted only if it is more “favorable”

than
the existing state. For simulations of ensembles, this usually means that the new
trial state is lower in energy.

In MC simulations Markov chains are required to accurately determine the
properties of the system in the finite time available for simulation. The role of
Markov chains is to sample those states which make the most significant
contributions to the calculated thermodynamic averages.

Metropolis Sampling

Generates Markov chains which construct the probability weighted sample to
explore the thermodynamical behavior around the energy minimum.

Metropolis sampling biases the generation of configurations

towards those
which make the most significant contribution to the integral/average of interest.

It generates states with a probability of exp[E(rN)] and counts each of them
equally.

This is in contrast to the simple MC integration/sampling, which generates
states with equal probability and assigns them a weight of exp[E(rN)].

Metropolis sampling generates Markov chains which satisfy to conditions:
1. The outcome of each trial belongs to a finite set of possible

outcomes, called
the state space, {1

, 2

,…, m

, n

,….}.
2. The outcome of each trial depends only on the outcome of the immediately
preceding trial.

Metropolis Algorithm

The important aspect here is the transition probability, mn

, which is the
probability to go from state m

to n

. Several conditions must be satisfied.

mn

is a stochastic matrix, i.e. its rows must add to 1, so that:
m

mn 1

m

nmnm where m

and n

are the probability densities for states m and n.

This is the general condition for an irreducible, or ergodic, Markov chain, in
which every state can eventually be reached from another state. The elements of
the matrix can be found by imposing the “microscopic reversibility”

condition:

nmnmnm

Summing over all states m, and using rule for mn

, general condition is regained:

m m m

nnmnnmnmnm

Metropolis Algorithm
In 1953 Metropolis implemented first such scheme for distinct

states m and n:

mn

= mn

n

m

m

n
mn

= mn

(n

/m

)

n

< m

m

n

where mn

is the conditional probability of choosing n

as the trial state. Method
uses the condition that mn

= nm

, and schematically can be seen as:

i

rmaxR

State n

obtained from state m

by moving atom i to any
point in R with uniform probability.

Size of square is 2rmax

, centered on atom i (cube in 3D).
In R, there are a large, but finite number, NR , of possible
new n states, n

, denoted as ri
n. The Metropolis scheme

uses the following conditional probability:

mn

= 1/NR if ri
n

R.

mn

= 0

if ri
n

R.

Metropolis Algorithm

The aim is to compute <A> over measurements of A for configurations which
are generated according to p(rN):

Ndr
Z

TBk

)Nr(U
exp

)Nr(A)Nr(A

 Ndr
TBk

)Nr(U
expZ

To generate configurations according to desired p(rN), the algorithm in Metropolis
MC uses a Markov chain to sample the phase space with the ensemble distribution
and a transition probability, to go from state m to state n equal to 1 if the move is
downhill in energy (U = Unm

= Un

Um

< 0).
If the move is uphill (U > 0), the move is accepted with a probability defined by
the ratio of probabilities of initial and final states:

TBk
nmU

exp
TBk

mUnU
exp

TBk
mU

exp
Z

1

TBk
nU

exp
Z

1

mp
np

m

n

1. Assign initial position to particles & calculate U.
2. Move one particle randomly & calculate new U’

and U=U’-U.
3. If U < 0

-

accept move.
4. If U > 0

-

accept move if

< exp[-U]; (0,1) –

random number.
5. If move rejected -

take the old configuration as the new one
-

repeat 2 -

4 procedure for another arbitrarily chosen particle.
6. For each new configuration evaluate <A>.
7. Repeat the whole procedure a few million times for adequate statistic

Always
accept

Accept

Reject

exp[-U]

1

0

2

1

U

ri

r0

Metropolis Monte Carlo

Algorithm 1: Basic Metropolis NVT MC Program

program mc

basic Metropolis algorithm

do icycl = 1, ncycl

perform ncycl MC cycles
call mcmove

displace particle
if (mod(icycl, nsamp) .eq. 0)

call sample

sample averages
enddo

end

Comments:
Typically, MC simulations are performed in cycles. During

each cycle, a
displacement is attempted for every particle.

The atom to be displaced can be chosen randomly or alternatively.
It is also possible to displace every atom and apply the acceptance criterion

to the combined move.

Algorithm 2: Attempt to displace particle

subroutine

mcmove

attempts to displace particle

o = int(ranf()*npart) + 1

select a particle at random
call ener(x(o), eno)

energy old configuration
xn = x(o) + (ranf() –

0.5)*delr

give particle random displacement
call ener(xn, enn)

energy new configuration
if (ranf() .lt. exp(-beta*(enn

eno)) check acceptance rule
x(o) = xn replace x(o) by xn

return
end

Comments:
There is a maximum allowed displacement (dMax). The choice of dMax will

affect the acceptance rate (50% is most often derired).
Small values of dMax improve acceptance rate but slow the

sampling of the
phase space. Conversely, large values for dMax will reduce acceptance rate.

Algorithm 3: Use of Verlet List in a MC move

subroutine mcmove_verlet

attempts to displace a particle
using a Verlet list

o = int(ranf()*npart) + 1

selects a particle at random

if (abs(x(o) –

xv(o)) .gt. (rv

rc)/2)

check to make new list
call new_vlist

call en_vlist(o, x(o), eno)

energy old configuration
xn = x(o) + (ranf() –

0.5)*delr

random displacement

if (abs(xn –

xv(o)) .gt. (rv

rc)/2)

check to make new list
call new_vlist

call en_vlist(o, xn, enn)

energy new configuration
arg = exp(-beta*(enn

eno)
if (ranf() .lt. arg) check acceptance condition

x(o) = xn

if accepted, replace x(o) with xn

return
end

Algorithm 4: Calculating energy using Verlet lists

subroutine en_vlist

(i, xi, en)

calculates energy using
the Verlet list

en = 0

do jj = 1, nlist(i)

loop over the particles in list
j = list (i, jj)

next particle in the list
en = en + enij(i, xi, j, x(j))

get the energy
enddo

return
end

Comments:
As in MD, averages in MC simulations are only accumulated

after reaching
equilibrium.

The number of required cycles for equilibration is not known beforehand. It
is safe to disregard a large number of early cycles.

Algorithm 5: Use of Cell list in MC move

subroutine mcmove_neigh

attempts to displace particle
using a cell list

call newnlist(rc)

make the cell list
o = int(ranf()*npart) + 1

select a particle at random

call en_nlist(o, x(o), eno)

calculate energy old configuration
xn = x(o) + (ranf() –

0.5)*delr

give particle random displacement

call en_nlist(o, xn, enn)

calculate energy new configuration
arg = exp(-beta*(enn

eno))

if (ranf() .lt. arg)

check acceptance rule
x(o) = xn

if accepted, replace x(o) by xn

return
end

Algorithm 6: Calculate energy using Cell list

subroutine ennlist (i, xi, en)

calculates energy using cell list

en = 0
icel = int(xi/rn)

determine the cell number

do ncel = 1, neigh

loop over the neighbor cells
jcel = neigh(icel, ncel)

number of the neighbor
j = hoc(jcel)

head of chain in cell jcel

do while (j .ne. 0)

loop over particles in cell
if (i .ne. j)

en = en + enij(i, xi, j, x(j))

get the energy
j = link_l(j)

next particle in the list
enddo

enddo

return
end

Algorithm 7: MC using Combination of Verlet and Cell lists

subroutine mcmove_clist

displace a particle using a combined list

o = int (ranf()*npart) + 1

select a particle at random

if (abs(x(o) –

xv(o)) .gt. (rv –

rc))

check to make a new list
call new_clist

call en_vlist(o, x(o), eno)

energy old configuration using Verlet
xn = x(o) + (ranf() –

0.5)*delr

random displacement

if (abs (xn –

xv(o)) .gt. (rv –

rc))

check to make new list
call new_clist

call en_vlist(o, xn, enn)

energy new configuration using Verlet
arg = exp (-beta*(enn

eno))

if (ranf() .lt. arg)

check acceptance condition
x(o) = xn

if accepted, replace x(o) by xn

return
end

Smarter Monte Carlo
In conventional MC, all particles are moved with equal probability in

randomly
chosen directions.

The Metropolis method can be extended to achieve considerably even more
efficient sampling:

mn

= mn

nm

n

mn

m

m

n
mn

= mn

(nm

n

/mn

m

)

nm

n

< mn

m

m

n

It can be shown that microscopic reversibility holds even for mn

 nm

. Markov
chains can be generated, and moves from state m

to state n,

according to mn

, are
accepted with a probability given by min(1, nm

n

/mn

m

).

Preferential sampling –

sampling different regions more often than others.
Force-bias Monte Carlo (FBMC) –

biasing the movement of particles in the
direction of forces acting on it.

Smart Monte Carlo (SMC) –

motion due to random as well as systematic forces.
Virial-bias Monte Carlo –

FBMC and SMC in NPT ensemble.

Metropolis MC in various ensembles

Generally one follows the basic Metropolis sampling algorithm

One needs sample via random particle displacements, volume changes, as well as
removal and insertion of particles.

One must use appropriate weight function and acceptance rules.

In the NVT ensemble, the natural choice for Metropolis MC, the PDF and weight
functions are:

)Eexp(

)Eexp(pNVT

TBk
nmE

exp
TBk

mEnE
exp

mp
np

m

n

Isothermal

Isobaric (NPT) ensemble

One needs to allow for random particle displacements as well as volume changes.
Scaled coordinates si

= L-1ri

(ri

are atomic coordinates) used for volume changes.

The PDF in NPT is:

 PVEexp

PVEexppNPT

]VlnN))s(PV(exp[V

Markov chains are generated with a limiting distribution proportional to:

New states obtained by random particle displacements and/or volume changes:

)12(sss max
m
i

n
i)12(VVV maxmn

In the new state n, a quantity closely related to enthalpy is calculated:

 mn
1

mnnmnm VVlnN)VV(PVH

and move accepted with probability equal to min[1, exp(Hnm

)].

Algorithm 8: MC in constant (NPT) ensemble

program mc_npt

basic Metropolis NPT simulation

do icycl = 1, ncycl

perform ncycl MC cycles
ran = ranf()*(npart +1) + 1

if (ran .le. npart) then
call mcmove

attempt particle displacement
else

call mcvol

attempt volume change
endif

if (mod (icycl, nsamp) .eq. 0)
call sample

sample averages

enddo
end

Obs: Each cycle, one performs on average npart attempts to displace particles and one
attempt to change the volume.

Algorithm 9: Attempt to change volume

subroutine mcvol

attempt to change volume

call toterg(box, eno)

total energy old configuration
vo = box**3

determine old volume
lnvn = log(vo) + (ranf() –

0.5)*vmax

perform random walk in lnV
vn = exp(lnvn)
boxn = vn**(1/3)

new box length
do i = 1, npart

x(i) = x(i)*boxn/box

rescale centre of mass
enddo
call toterg(boxn, enn)

total energy new configuration
arg = -beta*((enn

eno) + p*(vn

vo)

(npart + 1)*log(vn/vo)/beta)
appropriate weight function!

if (ranf() .gt. exp(arg)) then

check acceptance rule
do i = 1, npart

for REJECTED moves
x(i) = x(i)*box/boxn

restore old positions
enddo

endif

return
end

Grand

canonical (VT) ensemble

In this case one needs to allow for random addition/removal of particles from the
system in addition to random particle displacements. Scaled coordinates, defined
as for NPT can be used, and an activity term:

]VlnNlnN3!Nln)N)s((exp[V

Markov chains are generated with a limiting distribution proportional to:

Random particle displacements yield states accepted with the same probability as
in the NVT ensemble: min[1,exp(Enm

)].
The insertion, respectively removal of a particle, yields states

according to:

 })N(E)1N(Eexp{

1N3
V

,1min1NN

;)exp(z 3 21
B

2 Tmk2h

thermal de Broglie wavelength

 })N(E)1N(Eexp{

V
N3

,1min1NN

Algorithm 10: MC in constant (VT) ensemble

program mc_gc

basic Metropolis VT simulation

do icycl = 1, ncycl

perform ncycl MC cycles
ran = int(ranf()*(npart + nexc)) + 1

if (ran .le. npart) then
call mcmove

perform particle displacement
else

call mcexc

exchange a particle with reservoir
endif

if (mod(icycl, nsamp) .eq. 0)
call sample

sample averages
enddo

return
end

Obs: Each cycle, one performs on average npart attempts to displace particles and nexc
attempts to exchange particles with the reservoir.

Algorithm 11: Attempt to exchange particle with reservoir
subroutine mcexc

attempt to exchange particles with reservoir

if (ranf() .lt. 0.5) then

decide to remove or add a particle
if (npart. eq. 0) return

test whether there is a particle
o = int(npart*ranf()) + 1

select a particle to be removed
call ener(x(o), eno)

energy particle o
arg = npart*exp(beta*eno) / (zz*vol) acceptance rule
if (ranf() .lt. arg) then

check acceptance rule
x(o) = x(npart)

if accepted, remove particle o
npart = npart –

1
endif

else
xn = ranf()*box

test

new particle at a random position
call ener(xn, enn)

energy new particle
arg = zz*vol*exp(-beta*enn) / (npart+1) acceptance rule
if (ranf() .lt. arg) then

check acceptance rule
x(npart+1) = xn

if accepted, add new particle
npart = npart +1

endif

return
end

MC simulations in the Gibbs ensemble

Gibbs ensemble

originally introduced as a combination of NVT, NPT and
VT ensembles

Well suited for simulations of “coexistence without interfaces”.

eg. First order phase transitions, phase equilibria in general.

standard technique for studies in vapour-liquid and liquid-liquid equilibria.

Can be implemented as either NVT or NPT ensembles

NVT used in one-component simulations

NPT used in simulations of systems with two or more components.

Focus here is on the NVT “Gibbs ensemble”.

Definition: the ensemble in which two systems can exchange both volume and
particles in such a way that the total volume V and total number of
particles N are fixed.

MC simulations in the Gibbs ensemble

MC schemes for this ensemble must sample all possible configurations of two
systems that can exchange particles and volume.

One needs to consider the following trial moves:

Displacement of a randomly selected particle.

Change of the volume such that total volume remains constant.

Transfer of a randomly selected particle from one box to the other.

)]}1n
0)- U(s1n

n {-β{-β(exp, 1 min0ρnρ

)]}}N
0U(s)N

nβ[U(s{exp

11nN

0
1VV

n
1VV

11n

0
1V

n
1V

, 1 min0ρnρ

)]}N
0U(s)N

nβ[U(s{exp
1) V11(N- n

)1 (V-V1n
, 1 min0ρnρ

Particle displacement:

Volume change:

Particle exchange:

Algorithm 12: MC in the Gibbs ensemble

program mc_Gibbs

Gibbs ensemble simulation

do icycl = 1, ncycl

perform ncycl MC cycles
ran = ranf()*(npart + nvol + nswap)

decide what to do
if (ran .le. npart) then

call mcmove

attempt to displace particle
else if (ran .le. (npart + nvol))

call mcvol

attempt to change the volume
else

call mcswap

attempt to swap a particle
endif

call sample

sample averages
enddo

return
end

Algorithm 13: Attempt to change volume in Gibbs ensemble
subroutine mcvol

attempt to change volume
call toterg(box1, en1o)

energy old conf. box 1
call toterg(box2, en2o)

and 2 (box1: box length)
vo1 = box1**3

old volume box 1
vo2 = v –

vo1

and box 2
lnvn = log(vo1/vo2) + (ranf() –

0.5)*vmax) random walk in ln(V1

/V2

)
v1n = v*exp(lnvn) / (1 + exp(lnvn))

new volume box 1
v2n = v –

v1n

and box 2
box1n = v1n**(1/3)

new box length box 1
box2n = v2n**(1/3)

new box length box 2
do i = 1, npart

if (ibox(i) .eq. 1) then

determine which box
fact = box1n/box1o

else
fact = bo2n/box2o

endif
x(i) = x(i)*fact

rescale positions
enddo

call toterg(box1n, en1n)

total energy new box 1
call toterg(box2n, en2n)

total energy new box 2

arg1 = -beta*((en1n -

en1o) + (npbox(1) + 1)*log(v1n/v1o) /beta)

appropriate weight function
arg2 = -beta*((en2n -

en2o) + (npbox(2) + 1)*log(v2n/v2o) /beta) appropriate weight function

if (ranf() .gt. exp(arg1 + arg2)) then

check acceptance rule
do i = 1, npart

for REJECTED moves
if (ibox(i) .eq. 1) then

determine which box
fact = box1o/box1n

else
fact = box2o/box2n

endif
x(i) = x(i)*fact

restore positions
enddo

endif

return
end

Algorithm 14: Attempt to swap a particle between two boxes
subroutine mswap

attempts to swap a particle between two boxes
if (ranf() .lt. 0.5) then

which box to add or remove
in = 1
out = 2

else
in = 2
out = 1

endif

xn = ranf ()*box(in)

new particle at random position
call ener(xn, enn, in)

energy new particle in box in

w(in) = w(in) + vol(in)*exp(-beta*enn) / (npbox(in) +1) update chemical potential ***

if (npbox(out) .eq. 0) return

if box empty return
ido = 0

find a particle to be removed
do while (ido. ne. out)

o = int(npart*ranf()) +1
ido = ibox(o)

enddo
call ener(x(o), eno, out)

energy particle o in box out

arg = exp(-beta*(enn

eno + log (vol(out)*(npbox(in) +1) / (vol(in)*npbox(out))) / beta))
appropriate weight function

if (ranf() .lt. arg) then

check acceptance rule
x(o) = xn

add new particle to box in
ibox(o) = in
npbox(out) = npbox(out) –

1
npbox(in) = npbox(in) + 1

endif

return
end

Kinetic Monte Carlo

Deposition

Aggregation

Nucleation

Terrace Diffusion

Edge Diffusion

Consider Diffusion on a triangular lattice

D DJ

DJ
1

2d t
1
N

R i t

i1

N

2

kBT

 ln x

N

N 2 N 2

Thermodynamic
factor

Self Diffusion
Coefficient

R i t

R j t

DJ
1

2d t
1
N

R i t

i1

N

2

Diffusion

D* 1
2d t

1
N

R i t 2

i1

N

Standard Monte Carlo to study diffusion

•

Pick an atom at random

Standard Monte Carlo to study diffusion

•

Pick an atom at random
•

Pick a hop direction

Standard Monte Carlo to study diffusion

•

Pick an atom at random
•

Pick a hop direction

•

Calculate exp Eb kBT

Standard Monte Carlo to study diffusion

•

Pick an atom at random
•

Pick a hop direction

•

Calculate
•

If (> random
number) do the hop

exp Eb kBT
exp Eb kBT

Kinetic Monte Carlo

Consider all hops simultaneously

Wi * exp
Ei
kBT

For each potential hop i,
calculate the hop rate

Wi * exp
Ei
kBT

For each potential hop i,
calculate the hop rate

Then randomly choose a hop k, with probability Wk

Wi * exp
Ei
kBT

For each potential hop i,
calculate the hop rate

Then randomly choose a hop k, with probability Wk
= random number1

Wi * exp
Ei
kBT

For each potential hop i,
calculate the hop rate

Then randomly choose a hop k, with probability Wk
= random number1

Wi
i1

k1

 1 W Wi
i 0

k

 W Wi
i 0

Nhops

Time

After hop k we need to update the time

= random number 2

t 1
W

log 2

Wi
i1

k1

 1 W Wi
i 0

k

Two independent stochastic variables:
the hop k and the waiting time t

t 1
W

log 2

W Wi
i 0

Nhops

Wi * exp
Ei
kBT

Kinetic Monte Carlo

•

Hop every time
•

Consider all possible hops simultaneously

•

Pick hop according its relative probability
•

Update the time such that t

on average equals

the time that we would have waited in standard
Monte Carlo

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Consider Diffusion on a triangular lattice
	Diffusion
	Standard Monte Carlo to study diffusion
	Standard Monte Carlo to study diffusion
	Standard Monte Carlo to study diffusion
	Standard Monte Carlo to study diffusion
	Kinetic Monte Carlo
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Time
	Two independent stochastic variables: �the hop k and the waiting time t
	Kinetic Monte Carlo

