Exam in Statistical Methods, 2014-12-17

Time allowed:	kl: 8-12
Allowed aids:	Calculator. One handwritten A4 paper (both sides) with the students own notes.
Assisting teacher:	Lotta Hallberg
Grades:	A=19-20 points, B=17-18p, C=14-16p, D=12-13p, E=10-11p

Provide a detailed report that shows motivation of the results.

1

Let $f(y|\alpha,\beta) = \frac{1}{\alpha}e^{\frac{-(y-\beta)}{\alpha}}$, $\beta < y < \infty$, $0 < \alpha < \infty$ be density function to the random variable Y,

lpha and eta are parameters

a)	Show that $f(y lpha, eta)$ is a density function.	2р
b)	Determine the distribution function	1р
c)	Calculate the probability $Pig(eta\!+\!1\!<\!Y\leqeta\!+\!2ig)$ when $lpha\!=\!2$	1р

2

Let the bivariate random variable (X, Y) have density function:

f(x, y) = k(x+2y) where 0 < 2y < x < 2.

a)	Determine k.	2p
b)	Calculate $E[X Y = \frac{1}{2}]$	Зр

3

A company's management want to investigate the stress level of the employees. Therefore they check with 40 randomly selected employees and ask if they feel stress at work and 8 of them answered yes. Assume that the total number of employees is very large.

Estimate the proportion *p* of stressed employees in the company using:

a)	Method of moments.	1р
b)	Maximum Likelihood method.	2p
c)	Bayes method. Use the conjugate beta prior, beta(2,4)	2p

d) Test the hypothesis $H_0: p = 0.15$ against $H_a: p > 0.15$ using the observation above. Use large sample theory. 10% significance level. 2p

2p

4

The following data are measured on 7 female runners. Step = average number of steps per second m/s = running speed, meters per second. A runner are assumed to be good if the number of steps per second increase with the speed.

Step=Y	m/s=x	
3.05	4.76	
3.12	5.06	
3.17	5.25	
3.25	5.59	
3.36	5.99	
3.46	6.32	
3.55	6.63	

a) Set up the simple linear regression model and estimate the regression parameters β_0 and β_1 .

b) Test if the slope is zero. You may use without showing any calculations that SSE= 0,00043.
Use 5% significance level. Interpret your result.
2p