Exam in Statistical Methods, 2014-12-17

Time allowed:
Allowed aids:
Assisting teacher:
Grades:
kl: 8-12
Calculator. One handwritten A4 paper (both sides) with the students own notes.
Lotta Hallberg
$A=19-20$ points, $B=17-18 p, C=14-16 p, D=12-13 p, E=10-11 p$

Provide a detailed report that shows motivation of the results.

1

Let $f(y \mid \alpha, \beta)=\frac{1}{\alpha} e^{\frac{-(y-\beta)}{\alpha}}, \quad \beta<y<\infty, \quad 0<\alpha<\infty$ be density function to the random variable Y, α and β are parameters
a) Show that $f(y \mid \alpha, \beta)$ is a density function. 2 p
b) Determine the distribution function $1 p$
c) Calculate the probability $P(\beta+1<Y \leq \beta+2)$ when $\alpha=2$ 1p

2

Let the bivariate random variable (X, Y) have density function:
$f(x, y)=k(x+2 y)$ where $0<2 y<x<2$.
a) Determine k. 2p
b) Calculate $E[X \mid Y=1 / 2]$ 3p

3

A company's management want to investigate the stress level of the employees. Therefore they check with 40 randomly selected employees and ask if they feel stress at work and 8 of them answered yes. Assume that the total number of employees is very large.

Estimate the proportion p of stressed employees in the company using:
a) Method of moments. $1 p$
b) Maximum Likelihood method. $2 p$
c) Bayes method. Use the conjugate beta prior, beta(2,4) $2 p$
d) Test the hypothesis $H_{0}: p=0,15$ against $H_{a}: p>0,15$ using the observation above. Use large sample theory. 10% significance level.
$2 p$

LH

4

The following data are measured on 7 female runners.
Step = average number of steps per second
$\mathrm{m} / \mathrm{s}=$ running speed, meters per second.
A runner are assumed to be good if the number of steps per second increase with the speed.

Step $=\mathbf{Y}$	$\mathrm{m} / \mathrm{s}=\mathrm{x}$
3.05	4.76
3.12	5.06
3.17	5.25
3.25	5.59
3.36	5.99
3.46	6.32
3.55	6.63

a) Set up the simple linear regression model and estimate the regression parameters β_{0} and β_{1}.
b) Test if the slope is zero. You may use without showing any calculations that $\mathrm{SSE}=0,00043$. Use 5\% significance level. Interpret your result. 2p

