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Monte Carlo is NOT another form of dynamics.

Monte Carlo is a SAMPLING method.

The two most important aspects to be decided in Monte Carlo approaches are:

1. WHICH POPULATION TO SAMPLE FROM.
One needs to impose some constraints on the population of states sampled.

2. WITH WHAT PROBABILITY TO SAMPLE.
Biased or unbiased sampling can make a huge difference in efficiency.



Monte Carlo usage in Science

Classical Monte Carlo (CMC) — used to obtain samples from a probability distribution to
‘ determine, for example, energy minimum structures (e.g., Ising spin model).

Course focus
- Simulation Monte Carlo (SMC) — algorithms used to evolve configurations based on various

acceptance rules (e.g., Kinetic Monte Carlo).

Quantum Monte Carlo (QMC) — random walks can be used to determine quantum-
mechanical energies.

Path-Integral Monte Carlo (PMC) — thermodynamics properties can be evaluated from
quantum statistical mechanical integrals.



Molecular Dynamics or Monte Carlo?

In Molecular Dynamics, properties are evaluated by tracking them over time.
For a given microscopic state, macroscopic properties are calculated as time averages.

These time averages, however, include only the states which occur during the time scale of the MD
simulation. Several important issues arise:

1. The length of the MD run i1s finite (10s or 100s of us with current supercomputers). There are
processes/excitations which occur over longer times which would not be included in the MD time averages.

2. One needs to calculate properties averages, but there might not be interest in simulating, or knowledge
of, the actual system dynamics (e.g., Ising spin model). A considerably less demanding technique (CPU-

wise) can be used to do the job.

In both cases, MC statistical sampling could be the best choice.



What to sample?

The statistical ensemble gives the group of states over which one samples.
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Sample with Constraints Fixed Variables

Macroscopic conditions (constant V, T, N) translate as boundary conditions,
or constraints, in the microscopic universe.

Microscopic systems are then defined by the fixed thermodynamic variables
in the macroscopic world (NVE), (NVT), (NPT) etc.




There are two types of thermodynamic variables:
Extensive variables — scale with size of system (V, N).

Intensive variables — don’t scale with size (T, P, p)

Intensive variables are the conjugates of extensive variables.

The constraint used to sample the microscopic system is set by
the fixed extensive thermodynamic variable.

The sampling probability depends on the relevant Hamiltonian.

The Hamiltonian in microscopic space corresponds to the
free energy function in macroscopic space.




The conjugate, extensive and intensive variables, always “work” in pairs.

First law of thermodynamics, in the energy formulation, yields for the work
terms, using the conjugate pairs:

dU=TdS+(—PdV)+pdN +...

S 1s extensive, T 1s intensive; TdS (heat flow term)
V is extensive, P is intensive; PdV (mechanical work done term)
N is extensive, u 1s intensive; udN (chemical work term)

One needs to always specify at least one variable for each pair of conjugate
variables:
constant S or constant T
constant V or constant P
constant N or constant p

This is how the constraints for the microscopic systems are defined.




This is also how the so-called valid thermodynamic ensembles are constructed.

In MC, thermodynamic quantities are averages over relevant set (population)
of microscopic states (ensembles).

(NVE) — microcanonical ensemble
(NVT) — canonical ensemble

(LVT) — grand-canonical ensemble
(NPT) — isothermal-isobaric ensemble

Ensemble is the collection of all possible microscopic states
the system can be in, for a given macroscopic condition.

This defines the population of states, including relevant
constraints, which must be sampled in MC simulations.




As ensembles are determined by the extensive variables kept constant, the
simplest one to construct is the (NVE) microcanonical ensemble.

It 1s ideally suited for Newtonian mechanics in a system closed in a box.
If the box 1s closed, N cannot change, the volume is again fixed, and in the case
of Newtonian dynamics, the energy is fixed as well.

This is the reason why the (NVE) ensemble is the most natural ensemble for
MD simulations. However, this is not the case in MC, where particle momenta
are not involved.

In the NVE ensemble all states S(q;,p;) of energy “E” have equal probability
to be visited. We say that there are “n” of such states. All other states “S,*
(with energies E, # E) have zero probability to be visited. Thus, the
probability that a specific state S(q;,p;) 1s occupied at a given instant 1s 1/n.




Regarding other statistical ensembles like NVT, NPT, and pVT

How to sample?

The probability of states in any ensemble is proportional to e PH, where H is the
Hamiltonian and 3 = 1/k;T.

p~ exp(—BH)
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This probability has to be normalized by the partition function Z, which is
the sum of probabilities over all states v in the ensemble:

_ _ _ exp(-BH,) _ exp(-BH,)
‘= %‘,exp( PH) B >.exp(—BH, ) B Z

p,, called the probability distribution function (PDF), yields in this manner the

correct probability to sample essentially in any ensemble, provided one knows H.

The microscopic H should include everything that fluctuates in the system. Its
correct form can be obtained by taking a Legendre transformation of the entropy
of the system (H is essentially a Legendre transform), obtained from 15t law:

dS=1au+Pav_HaN+..

T T T

Note the conjugate pairs in the entropy formulation: (1/T, U), (- P/T, V), (W/T, N).
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The Hamiltonian, which corresponds to the relevant free energy function in
macroscopic space, can be obtained for each microscopic ensemble.

Canonical Ensemble (NVT) dE =TdS+(- %/)+ M + ...

First law becomes: dS = %dE or d(S =0

the relevant free energy is F = E — TS, which 1s the Helmholtz free energy,
and the Legendre transform of entropy yields: —-F/T =S — E/T.

The Hamiltonian will thus contain only therm, and the PDF for the
canonical (NVT) ensemble takes the following form:

pNVT _ exp(_BEv)
Y Z exp(—BEV)

B=1/(ksT)
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Isothermal-Isobaric Ensemble (NPT) dE =TdS+(—PdV)+ MXI <o

First law becomes: dS = ;dE - FI;dV or d( @ =0

The free energy in this case is:
F=E-TS +PV

and the Legendre transform of entropy takes the form:
—F/T=S - E/T —PV/T.

From this, only thrm is taken 1n the Hamiltonian
and the PDF for the isothermal-isobaric (NPT) ensemble becomes:

I:)NPT _ eXp[_ B(Ev + PVv )]
Y 2 exp[— B(Ev +PV, )]

B=1/(ksT)
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Grand-canonical Ensemble (uVT) dE =TdS +(— Pa¥ )+ udN +...

First law becomes: dS = %dE — %dN or d(S

The free energy for fixed (u,V,T) becomes:
F=E-TS—-uN
and the Legendre transform of entropy for this ensemble is:
—F/T =S —E/T + uN/T.
erm in the Hamiltonian

Again, from this one takes only the
and the PDF for the isothermal-isobaric (uVT) ensemble becomes:

wvt _ exp[-B(E, —pN)]
%em[— B(E, —pN)]
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Monte Carlo Integration

Originally, Monte Carlo was used as an integration method.

1 An illustration of Monte Carlo =

‘integration. In this example, the domain
D is the inner circle and the domain E
is the square. Because the square's
‘area (4) can be easily calculated, the
‘area of the circle (*1.02) can be
‘estimated by the ratio (0.8) of the
'points inside the circle (40) to the total
number of points (50), yielding an
approximation for the circle's area of
4*0.8 =3.2=TL

-1 -0.5 0 0.5 1

The procedure was easily extended to functions of two variables and multiple

integrals. It 1s called SIMPLE SAMPLING.
From wikipedia
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Simple Sampling in MC (Simple MC)

The aim 1n MC simulations is to calculate average thermodynamic properties,
<A(rN)>, which can be done by evaluating multidimensional integrals over the

3N degrees of freedom in an N particle system:
(AGN)) = AP )dr

where p(rY) is the appropriate PDF in the respective ensemble.
Here, one can concentrate on the (NVT) ensemble for two reasons:

1. ALL OTHER ENSEMBLES follow the same rational/approach as in (NVT).

2. The NVT ensemble is the natural choice for MC simulations.

In MD, Newton’s EOM lead naturally to energy conservation, hence the NVE
selection.

In MC, until recently, it was not possible to perform calculations in the NVE
ensemble due to the absence of kinetic energy. Temperature, however, can be
easily kept constant in the PDF, and the NVT-MC 1s simplest to implement.
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Simple Sampling in MC (Simple MC)

As shown, the PDF in the NVT ensemble takes the form:
eXp[— BE(?N)}

fexp| ~BEG™) |ar™

pEY) =

These integrals cannot be evaluated analytically or numerically. Typical schemes
for 3N-dimensional integrals require m3N function evaluations, where m is the
number of points required to evaluate the integral in each dimension.

In simple MC, a large number of trial configurations ¥ are generated and the
integrals are replaced by summations over a finite number of configurations:

(AT = Nzll A exptPE)

Ntzrial exp[— BE,;(r" )]

1=1
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Simple Sampling in MC (Simple MC)

With simple sampling, each trial conﬁguration_r)N corresponds to a randomly
chosen state (point) v. If one randomly picks M states, they need to be weighted
with the correct probability p,:

A M A D, = eXp(_BEv) :eXp(_BEV)
< >_v§1pV ' %exp(—BEv) ANV

v=l

Simple sampling does not work. The reason is states are picked essentially in
proportion to their degeneracy. The higher the energy, the more states at that
energy. One samples a great number of states but not the relevant ones.

This random, unbiased sampling of states yields too many configurations with
low weight, or very small Boltzmann factor, which make very little contribution
to the average which needs to be calculated.

One needs to bias the sampling method: IMPORTANCE SAMPLING.
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Importance Sampling

In importance sampling points are chosen according to the anticipated importance
of the value to the function (contribution 1t makes) and weighted by the mverse of
the probability of choice.

The difference is that in importance sampling one no longer uses a simple average
of all points sampled. In importance sampling the sampling is biased by the use of
a weighted average.
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Importance Sampling

In MC, importance sampling translates into biasing the sampling towards the
important, relevant, low energy states.

In other words, one picks states with a probability proportional to exp(—pE),
instead of randomly picking them and weighing them later by a probability.

Random sample

N

<A>:§I: eXP(_BEv) A

Ve Z exp(_BEv )

v=]

Vv

Relevant thermodynamic ensembles fluctuate around states with low energy,
so importance sampling is used in MC to sample mostly these states.
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Markov Chains

Used to construct probability weighted samples.

A Markov chain is a sequence of trials in which the outcome of successive
trials depends only on the immediately preceding trial.

The procedure ensures that one “walks” through the phase space and “visit”
each state with proper probability.

In Markov chains, a new state 1s accepted only if 1t 1s more “favorable” than
the existing state. For simulations of ensembles, this usually means that the new
trial state 1s lower 1n energy.

In MC simulations Markov chains are required to accurately determine the
properties of the system in the finite time available for stmulation. The role of
Markov chains 1s to sample those states which make the most significant
contributions to the calculated thermodynamic averages.
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Metropolis Sampling

Generates Markov chains which construct the probability weighted sample to
explore the thermodynamical behavior around the energy minimum.

Metropolis sampling biases the generation of configurations towards those
which make the most significant contribution to the integral/average of interest.

It generates states with a probability of exp[—BE(rN)] and counts each of them
equally.

This is in contrast to the simple MC integration/sampling, which generates
states with equal probability and assigns them a weight of exp[—BE(Y)].
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Metropolis Monte Carlo

1. Assign initial position to particles & calculate U.

2. Move one particle randomly & calculate new U’ and AU=U’-U.
3.1f AU <0 - accept move.

4. 1f AU >0 -accept move if ¢ <exp|-BAU|; § € (0,1) — random number.
5. If move rejected - take the old configuration as the new one

- repeat 2 - 4 procedure for another arbitrarily chosen particle.
6. For each new configuration evaluate <A>.

7. Repeat the whole procedure a few million times for adequate statistic

\ exp[-PAU]

o O |
5 Reject ¢
. ’ Always g

accept

Accept £,
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2D Ising spin model: example of Metropolis MC simulation

N A A B A STy TS

* Vo * A N N ‘ B: energy of magnetization

1 A { f @ ‘ f f @ @ (presence of external magnetic field)
R B 2 T D 2 I 2 2 | J: magnitude of spin/spin interactions

(R R N 2N R DR AN N N

(O S B S DR 2N A B N - _

A A A A (2) Randomly pick a spin and i i

(A N S B T R N B 8; gélcuéate new energy E(t+1)

0 2 N A B R R A N j D i £ < ex

‘ ' 1 * P f N o) AE Svh_)eregisptaﬂrzndolzlnfn%mbefEOBsA?é1)

https://www.ibiblio.org/e-notes/Perc/ising.htm

https://ruihaoqiu.github.io/MC-Magnetic-Phase-Transition/ 24
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Kinetic Monte Carlo

Deposition

Edge Diffusion,




Diffusion

S ONPA A‘!‘!’:‘:%“‘
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/\/

s = (2;’)1 <;,[;Ale(z)] > D* = (2;)1 <]1[;A]_éz(t)2>



Standard Monte Carlo to study diffusion




Standard Monte Carlo to study diffusion

e Pick an atom at random

e Pick a hop direction
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Standard Monte Carlo to study diffusion

 Pick an atom at random

« Pick a hop direction

e Calculate exp(-AEp/kpT)
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Standard Monte Carlo to study diffusion

 Pick an atom at random

« Pick a hop direction

e Calculate exp(-AEp/kpT)

o If( exp(—AEb [kpT )>rand0m
number) do the hop
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Kinetic Monte Carlo

Consider all hops simultaneously
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Optimization techniques — Simulated Annealing (SA)

General method to find the global minimum of a given function in a large space.
Name analogue to the metallurgy technique of heating and controlled cooling, to
increase crystal size, reduce defects.

SA is extensively used in conjunction with MD as well as MC and requires:
1. A description of possible system configurations.
2. A generator of random changes in the configurations.
3. An objective function (typically energy).
4. A control parameter (typically T) and an annealing schedule:
- Slow cooling (annealing), one can find global ground state (real world).
- Fast cooling (quenching), one can find local minimum (glass).

In MD, following steps are needed to implement SA:
- choose annealing schedule (cooling rate).
- solve Newton’s EOM for each atom.
- control T via coupling to heat bath (Andersen, Nosé-Hoover thermostats).

Downhill energy moves with Steepest Descent, Conjugate Gradient methods.
40



Adaptive simulated annealing: Metropolis Monte Carlo coupled to fictious thermostat

Define cost function ( Optimization by Simulated Annealing
& S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi
Science 220 (1983) 4598

Set of parameters €2

Ees

Compute X;;

~~

Random change of

one parameter

Compute X,

Draw a random
w number @ in (0,1)
Yes
Accept new config. « w Same config.
Ye

< Excellent method for
parameter-optimization
problems!

No

S No

Flowchart of Metropolis scheme coupled with a thermostat T. 41



Additional notes



c; is the “degeneracy” of A, value

Generalization of arithmetic mean value <A> /

Cr Ay +Cp Ay +Cs - Ag >i(ci- A)

<A> = <A> =
Ci+Cy+C3 2iCi
Let’s represent all possible states of a system with C1 f ’
a square grid. Let’'s assume that all states s; (square boxes) can be sampled Co =4
with equal probability (e.g., each state has equal energy and the simulation C3 =9
ensemble is NVE). All possible states of the system
The probability p,; that a state has a value "A;” of a property “A”
is given by . A, As | A1 | As
[

_ The denominator

PAI = — corresponds to the
@ "partition function" As As | A2 | Az

Given that all states (boxes) can be sampled with equal probability, A A A A
The expectation value (ensemble average) of A, when the system is 1 2 1 1

in equilibrium corresponds to the arithmetic average:
<A>ens = Zi (pAi'Ai) Ay

A A, Aj

This is the case for the NVE ensemble: the partition function is simply “N”, the number of microstates of equal energy



1.1. Metropolis Sampling

In statistical physics one can find the average of a property A({r}) that
is a function of the coordinates {r} of N particles, in a system that is in

thermodynamic equilibrium,

ne [N rA({r}yexp[—U ({r})/ kT

@exp[ U ({ r/ﬁk]\

[139% 4]

Probability that a state “r” is visited
during NVT sampling given

by Boltzmann stafistics

(1)
Canonical "partition function” Z

The calculation involves averaging the dynamical variable of interest, A, which
depends on the positions of all the particles in the system, over an appropriate
thermodynamic ensemble. Often the canonical ensemble is chosen; one with a
fixed number of particles, volume and temperature, N, V, and 7. In this case
the configurations are weighted by the Boltzmann factor exp[—U ({r})/kT],
where U is the potential energy of the system, and k& the Boltzmann constant.
Integration is over the positions of all particles (3N coordinates). The denom-
inator in Eq. (1) is needed for normalization, and is an important quantity in
its own right, because the Helmholtz free energy can be obtained from it (for
a system with the independent variables, N, V, and T).
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