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Multi-Dimensional Stochastic Variables

Distribution: FXl:---rXN(xl’ ...,XN) = Pr{X1 < X1, ...,XN < XN}
. aN
DenSIty le,...,XN (xl’ ""xN) — axl_" axN FX1,...,XN (Xl, ""xN)

Vector notation: X = (Xq,...,Xy), ¥ = (x4, ..,xy), Fzx(x), fz(x)

Example: X = (X4, ..., Xy) is jointly Gaussian, denoted as N(m, ¢21), if

\/ (2m)Ng2N

where 7 = E{X}and (x — m)(x — )T = X;(x; — m;)?

There is a more general form with another matrix than o2/
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Stochastic Process

Sample space: O \/é‘\/ \/ v t
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Examples of Stochastic Processes

Example 1: Finite number of realizations:

X(t) = sin(t + ¢), ¢ €{0,m/2,m,3m/2}.

Example 2: Infinite number of realizations:

X() = A-sin(t),  A~N(0,1).
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Examples of Stochastic Processes cont'd

Example 3: Infinite number of realizations:

cos(mt), [t] < 1/2
0, elsewhere

Each 4, is independent and N(0,1) /T\
>

One realization: A

X(0) = T Awg(t— k), g(®) = {
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Sampling of Stochastic Process:
N Time Instants

Vector notation

= Time instants: t = (t1,...,ty)
= Stochastic variable: X(@®) = X(ty), ..., X(ty))
= Realizations: X = (X1, 0, Xy)

N time instants
= Distribution: FX(,;)(X) = Pr{X(ty) < xq1, ..., X(ty) < xp}

N
= Density: fx®®) = 55 g Fx (™)

Sampling of stochastic process = Stochastic variable
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Ensemble Averages

“Observe many realizations and make an average” — functions of time

Expectation (mean): Auto-correlation function (ACF):
my(t) = EX ()} (1) = EX (t)X ()} =
= J fo(t)(x)dx j j x1x2fx(t1),x(t2)(x1, x7) dx1dx;
Quadratic mean (power): Symmetry: ry(ty,ty) = ry(ty, t1)

o ] _ )
E{X?()} = j X fx () (x)dx Power:  1x(t,t) = EXX*(t)}

Variance Special case: A is stochastic var.
oxw = E {(X(t) — mx(t))z} X(©) = g(tA)
rx(ty, ) =
= E{X*(0)} — mx(t) f_oooo g(t1,A)g(ty, A)fala) da
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Wide-Sense Stationarity

Definition: A stochastic process X (t) is said to be
wide-sense stationary (WSS) if

= Mean satisfies my(t) = my(t + A) for all A.

= ACF satisfies ry(t{, ty) = 1y(t; + A, t, + A) for all A.

Interpretation:

Constant mean, ACF only depends on time difference t = t; — t,

Notation: Mean my
ACF 7y (7)

2018-09-10 TSKSO01 Digital Communication - Lecture 2




Gaussian Processes

Recall: X = (X4, ..., Xy) is jointly Gaussian, denoted as N(m, ¢2I), if

fr(®) = e a T
\/ (2m)Ng2N
Definition: A stochastic process is called Gaussian if X(t) =

(X(ty), ..., X (ty)) is jointly Gaussian for any t = (ty, ..., ty)

There is a more general form with another matrix than o2

Definition: A process with ry(7) = constant - §(t) is called white.
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Power-Spectral Density (PSD)

Definition: Fourier transform of the ACF of a WSS process:

co

Rx(f) = Firx(v)} = j rx(D)e/#Tdr

— 00

Inverse:

co

re(@) = F LRy ()} = j Ry(f)el2nTdf

— 00

Power:

(00)

E{(X?(6)} = ry(0) = f Ry (F)df

— 00

One-sided PSD (of real-valued signal): Ry (f) + Rx(—f) for f = 0
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Filtering of Stochastic Process

Stochastic
process

X(t)

LTI-system
h(t)

 —— e

Input-output relation:

Stochastic
process

Y (t)

Y(t) = (X *h)(t) = f h(D)X(t — 1)dt

Requires stability:

[Z |h(@)|dt < oo

Holds regardless of stationarity
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Filtering of WSS Stochastic Process

Stochastic process

WSS stochastic LTI-system -
process X(t) h(t) Y(t) = f h(t)X(t — t)dt

Notation: H(f) = F{h(t)} = [___h(t)e /2™ tdt

Mean: my(t) = myH(0)
ACF:  1y(t, tp) = (h* h*1y)(7) where h(t) = h(-t).
PSD:  Ry(f) = Fliry(®)} = HIOH* (IR (f) = [H(FI*Rx(f)

Output is WSS with modified mean, ACF, and PSD
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Example: Thermal Noise 1(3) — Physics

A resistor;

a7

Thermal movements of electrons

= Random local currents
= Random local voltages

= Random total voltage

Model:
+ V() - V(t)=R-1(¢)
‘ R ‘
(<) Enormous
/ —

= [(t) Gaussian

l(t)=zlk(f)

= J(t) Gaussian

Short pulses, almost unit impulses
= I(t;) & I(t,) almost independent
fort; # t,

White Gaussian Noise
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Example: Thermal Noise 2(3) — PSD

Model cont'd:
Power of noise:
+ V() - e
@) =n© = | R(Ddf
R — 00
‘ o ‘
(N
Infinitely large!
White Gaussian noise V (t) with

Ny
Ry(f) =~ = 2kTR

Ny: Constant one-sided PSD
k ~ 1.38 - 10723 J/K (Boltzmann’s constant)

What is wrong?

T = Absolute temperature in Kelvin.
R = Resistance Q.
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Example: Thermal Noise 3(3)
More Exact Model

Gaussian noise with

_ 2Rh|f] h~6.63-1073*Js
RV(f) — ehlfI/kT — 1 (Planck’s constant)

Note: Ry (f) - 2kTRas f =- 0

-20
110 .
2kTR T=300K
| Rola FM White = Flat PSD in
0.5 radio 2G. 3G . ]
- interval of operation
v — WLAN
0 Lol ol TRt | v sl s ol MR | | 1aan L s
10 10° 10° 10 10° 10° 10"
1 MHz 1 GHz Flat PSD is fine!

——
Regulated radio spectrum
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Example: Filtering of White Noise Process

White noise process

X(t) Ideal passband FirlltOeiI;Zd
Ry(f) = N,/2 filter Y ()
L |Ifl+f] <2 | f
« H(f) = 2 — .
0 elsewhere £-Z fe ft+2
© 2 €2
= What is the variance of the noise?
my(t) = myH(0) =0
(00] N (0.0
ot =B} =) = | Re(Paf =2 [ IHDPdS = Nop
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One-way Digital Communication System

. Error control : Digital to analog Medium
Source i Channel i Modulator :
| encoder | .
: 1 I A
. Channel Digital i analog | Center frequency: f
coding . modulation channel Bandwidth: B Hz
Destination | Channel : De- _
estination : decoder : modulator :

Error correction Analog to digital ]
. | | How to generate the signal?
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Pulse-Amplitude Modulation (Baseband)

Representation information:

= s[n] = Time-discrete signal

Notation:
= T = Symbol interval
= p(t) = Pulse-shape function

Pulse-Amplitude Modulation (PAM):

x(t) = ) slnlp(t —nT)

n
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Nyquist Criterion for ISI-Free Communication

Sampling of x(t) at time kT

z|k] = x(kT) = 2 s[n]p(kT — nT)

n
Inter-symbol interference (ISl): z[k] depends on s[n] for k + n.

Goal: ISI-free communication!
z|k] = C - s[k] for constant C # 0.

(00)

Achi h _ - ™ =
chieved when p(kT) = C6[k] < T Z P(f—?)—c

m=—oo
1 ]
\ ]

Nyquist ISI criterion: Constant!
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A pulse with bandwidth less than 1/(2T)
cannot be Nyquist

A P(f)
N
—2/T ~1/T 1/T 2/T

\ 2P (-7
e VN

A pulse p(t) is said to be Nyquist if 2 f — —) is constant

m=—0oo
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A pulse with bandwidth 1/(2T) has to be
a sinc to be Nyquist

A P(f)

—zyi’ | —1>7’ 1}7’ | Q}T

A ZP(f-7)

m

2T 1T 1/T 2/T

A pulse p(t) is said to be Nyquist if 2 f — —) is constant

m=—0oo
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Interpretation of Nyquist in Time-domain

sinc(t + 1) sinc(t) sinc(t — 1)
sinc(t + 2) ~5 \ . J \ . ‘/// sinc(t — 2)
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A pulse with bandwidth more than 1/(2T)
can have many shapes to be Nyquist

A P(f)

D N

—2=/T | —li/T 1/T 2/T

A\ 2P (- %)

m

- - -
~ L N N No o
> > > >
P P N PR

~ ~ ~

2T 1T 1/T 2/T

A pulse p(t) is said to be Nyquist if Z f — —) is constant

m=—0oo
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Nyquist Criterion with Receiver Filtering

Recall: Pulse-Amplitude Modulation (PAM):

x(t) = ) slnlp(t —nT)

n

Receiver filtering y(t), T'(f):

(p * y)(t) acts as the pulse

(v «0)(®) = ) slnl(y = p)(t —nT)

n
New Nyquist criterion:

co

> rlr-Tp(r-3) -0

m=—oo

Called: p(t) and y(t) are Nyquist together
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Raised Cosine Pulse

A popular class of pulses bandwidth more than 1/(27T)

= Parameter a determines excess bandwidth
(Called: roll-off factor or normalized excess bandwidth)

( 1 —

T < ¢

, Il <~

P(f) =<T nT( 1—0() l-—«a 1+a
1 — — - -
\trcos\Fl==7))) o7 <=7
0, elsewhere

_ . (t\ cos(ant/T)
p(t) = sinc (?) 1— (2at/T)?

Sinc: p(t) decays as 1/|t| ,

Raised cosine: p(t) decays as 1/]t|3,
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Spectrum of a Raised Cosine Pulse

1 B / /' \ N\ N
/oo N
17 )
1 o Bandwidth
0.8F /./v»' A\ \\ _
a=02[1"a=08 a=08 \|a=02 1+a
I -\ =
. 4 2T
~0.6F ' | ]
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LH [
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a=0.8 la=0.2 a=02 | a=08
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2018-09-10 TSKSO01 Digital Communication - Lecture 2




Impulse Response of a Raised Cosine Pulse
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2018-09-10 TSKSO01 Digital Communication - Lecture 2




Root-Raised Cosine Pulse

A pulse whose spectrum is the square root of a Raised cosine
spectrum.

= Setp(t) and y(t) as root-raised cosine pulses

= Nyquist together — form a raised cosine pulse together

= Very common in real communication systems!
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Bandwidth in Baseband and Passband

Bandwidth: Distance from smallest to largest frequency

. : > f ' > f

4 f A
fc_E fc+2

Bandwidth (baseband):

N |

Bandwidth (passband): A

Example: Raised Cosine Pulse (symbol time T)
Baseband: Passband:
14+a 14+ a
B = B =
2T T
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