TSKS01 Digital Communication Lecture 2

Stochastic Processes, Noise Modeling, Pulse-Amplitude Modulation

Emil Björnson

Department of Electrical Engineering (ISY) Division of Communication Systems

Multi-Dimensional Stochastic Variables

Distribution:
$$F_{X_1,...,X_N}(x_1,...,x_N) = \Pr\{X_1 \le x_1,...,X_N \le x_N\}$$

Density: $f_{X_1,...,X_N}(x_1,...,x_N) = \frac{\partial^N}{\partial x_1 \cdots \partial x_N} F_{X_1,...,X_N}(x_1,...,x_N)$

Vector notation: $\overline{X} = (X_1, \dots, X_N), \quad \overline{x} = (x_1, \dots, x_N), \quad F_{\overline{X}}(\overline{x}), \quad f_{\overline{X}}(\overline{x})$

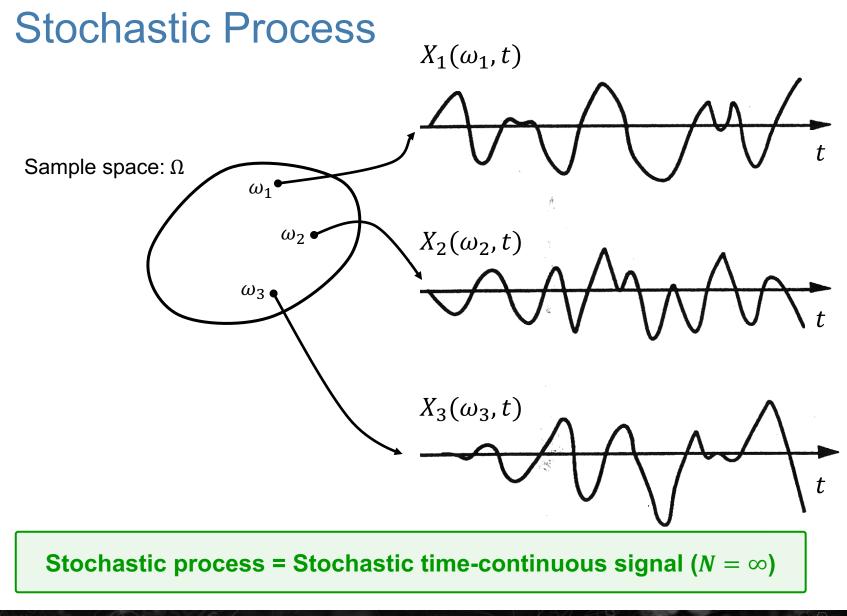
Example: $\overline{X} = (X_1, ..., X_N)$ is *jointly Gaussian*, denoted as $N(\overline{m}, \sigma^2 I)$, if

$$f_{\bar{X}}(\bar{x}) = \frac{1}{\sqrt{(2\pi)^N \sigma^{2N}}} e^{-\frac{1}{2\sigma^2}(\bar{x} - \bar{m})(\bar{x} - \bar{m})^T}$$

where
$$\overline{m} = E\{\overline{X}\}$$
 and $(\overline{x} - \overline{m})(\overline{x} - \overline{m})^T = \sum_i (x_i - m_i)^2$

2018-09-10

There is a more general form with another matrix than $\sigma^2 I$



2018-09-10

TSKS01 Digital Communication - Lecture 2

Examples of Stochastic Processes

Example 1: Finite number of realizations:

$$X(t) = \sin(t + \phi), \qquad \phi \in \{0, \pi/2, \pi, 3\pi/2\}.$$

Example 2: Infinite number of realizations:

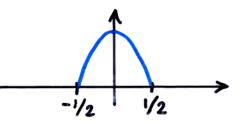
$$X(t) = A \cdot \sin(t), \qquad A \sim N(0,1).$$

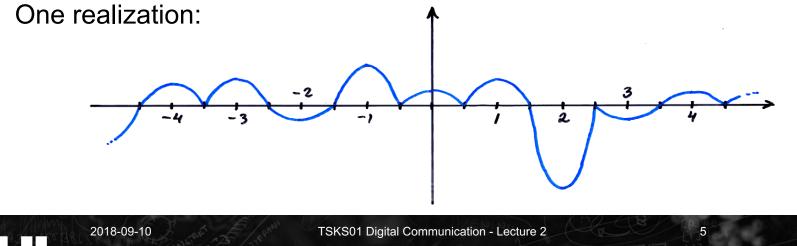
Examples of Stochastic Processes cont'd

Example 3: Infinite number of realizations:

$$X(t) = \sum_{k} A_k g(t-k), \qquad g(t) = \begin{cases} \cos(\pi t), & |t| < 1/2\\ 0, & \text{elsewhere} \end{cases}$$

Each A_k is independent and N(0,1)





Sampling of Stochastic Process: *N* Time Instants

Vector notation

- Time instants:
- Stochastic variable:
- Realizations:

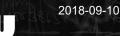
 $\overline{t} = (t_1, \dots, t_N)$ $X(\overline{t}) = (X(t_1), \dots, X(t_N))$ $\overline{x} = (x_1, \dots, x_N)$

N time instants

• Distribution: $F_{X(\bar{t})}(\bar{x}) = \Pr\{X(t_1) \le x_1, \dots, X(t_N) \le x_N\}$

$$F_{X(\bar{t})}(\bar{x}) = \Pr\{X(t_1) \le x_1, \dots, X(t_N) \le x_N\}$$
$$f_{X(\bar{t})}(\bar{x}) = \frac{\partial^N}{\partial x_1 \cdots \partial x_N} F_{X(\bar{t})}(\bar{x})$$

Sampling of stochastic process \rightarrow Stochastic variable



Ensemble Averages

"Observe many realizations and make an average" – functions of time

Expectation (mean):

$$m_X(t) = E\{X(t)\}$$
$$= \int_{-\infty}^{\infty} x f_{X(t)}(x) dx$$

Quadratic mean (power):

 $E\{X^2(t)\} = \int_{-\infty}^{\infty} x^2 f_{X(t)}(x) dx$

Variance

2018-09-10

$$\sigma_{X(t)}^2 = E\left\{\left(X(t) - m_X(t)\right)^2\right\}$$
$$= E\{X^2(t)\} - m_X^2(t)$$

Auto-correlation function (ACF):

$$r_X(t_1, t_2) = E\{X(t_1)X(t_2)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{X(t_1), X(t_2)}(x_1, x_2) dx_1 dx_2$$

Symmetry: $r_X(t_1, t_2) = r_X(t_2, t_1)$ Power: $r_X(t, t) = E\{X^2(t)\}$

Special case: *A* is stochastic var.

$$X(t) = g(t, A)$$

 $r_X(t_1, t_2) =$ $\int_{-\infty}^{\infty} g(t_1, A)g(t_2, A)f_A(a) da$

Wide-Sense Stationarity

Definition: A stochastic process X(t) is said to be *wide-sense stationary* (WSS) if

- Mean satisfies $m_X(t) = m_X(t + \Delta)$ for all Δ .
- ACF satisfies $r_X(t_1, t_2) = r_X(t_1 + \Delta, t_2 + \Delta)$ for all Δ .

Interpretation:

Constant mean, ACF only depends on time difference $\tau = t_1 - t_2$

Notation: Mean m_X ACF $r_X(\tau)$

Gaussian Processes

Recall: $\overline{X} = (X_1, ..., X_N)$ is *jointly Gaussian*, denoted as $N(\overline{m}, \sigma^2 I)$, if

$$f_{\bar{X}}(\bar{x}) = \frac{1}{\sqrt{(2\pi)^N \sigma^{2N}}} e^{-\frac{1}{2\sigma^2}(\bar{x} - \bar{m})(\bar{x} - \bar{m})^T}$$

Definition: A stochastic process is called *Gaussian* if $X(\bar{t}) = (X(t_1), ..., X(t_N))$ is jointly Gaussian for any $\bar{t} = (t_1, ..., t_N)$

There is a more general form with another matrix than $\sigma^2 I$

Definition: A process with $r_X(\tau) = \text{constant} \cdot \delta(t)$ is called *white*.

Power-Spectral Density (PSD)

Definition: Fourier transform of the ACF of a WSS process:

$$R_X(f) = \mathcal{F}\{r_X(\tau)\} = \int_{-\infty}^{\infty} r_X(\tau) e^{-j2\pi f\tau} d\tau$$

Inverse:

$$r_X(\tau) = \mathcal{F}^{-1}\{R_X(f)\} = \int_{-\infty}^{\infty} R_X(f)e^{j2\pi f\tau}df$$

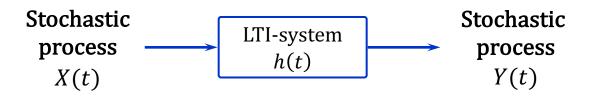
Power:

2018-09-10

$$E\{X^2(t)\} = r_X(0) = \int_{-\infty}^{\infty} R_X(f) df$$

One-sided PSD (of real-valued signal): $R_X(f) + R_X(-f)$ for $f \ge 0$

Filtering of Stochastic Process



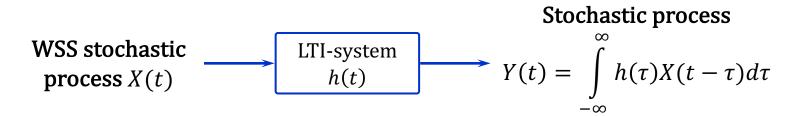
Input-output relation:

$$Y(t) = (X * h)(t) = \int_{-\infty}^{\infty} h(\tau)X(t - \tau)d\tau$$

Requires stability: $\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$

Holds regardless of stationarity

Filtering of WSS Stochastic Process



Notation: $H(f) = \mathcal{F}{h(t)} = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft}dt$

Mean:
$$m_Y(t) = m_X H(0)$$

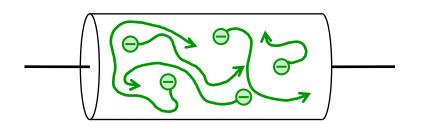
ACF: $r_Y(t_1, t_2) = (h * \tilde{h} * r_X)(\tau)$ where $\tilde{h}(t) = h(-t)$.
PSD: $R_Y(f) = \mathcal{F}\{r_Y(\tau)\} = H(f)H^*(f)R_X(f) = |H(f)|^2R_X(f)$

Output is WSS with modified mean, ACF, and PSD



Example: Thermal Noise 1(3) – Physics

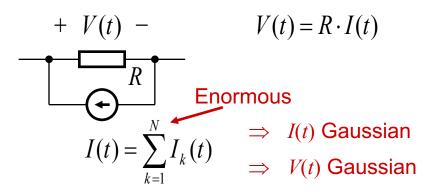
A resistor:



Thermal movements of electrons

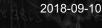
- \Rightarrow Random local currents
- \Rightarrow Random local voltages
- \Rightarrow Random total voltage

Model:



Short pulses, almost unit impulses $\Rightarrow I(t_1) \& I(t_2)$ almost independent for $t_1 \neq t_2$

White Gaussian Noise



Example: Thermal Noise 2(3) – PSD

Model cont'd:

+
$$V(t)$$
 -

White Gaussian noise V(t) with

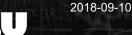
$$R_V(f) = \frac{N_0}{2} = 2kTR$$

- N₀: Constant one-sided PSD
- $k \approx 1.38 \cdot 10^{-23}$ J/K (Boltzmann's constant)
- T = Absolute temperature in Kelvin.
- $R = \text{Resistance } \Omega.$

Power of noise:

$$E\{V^2(t)\} = r_V(0) = \int_{-\infty}^{\infty} R_V(f) df$$

Infinitely large!



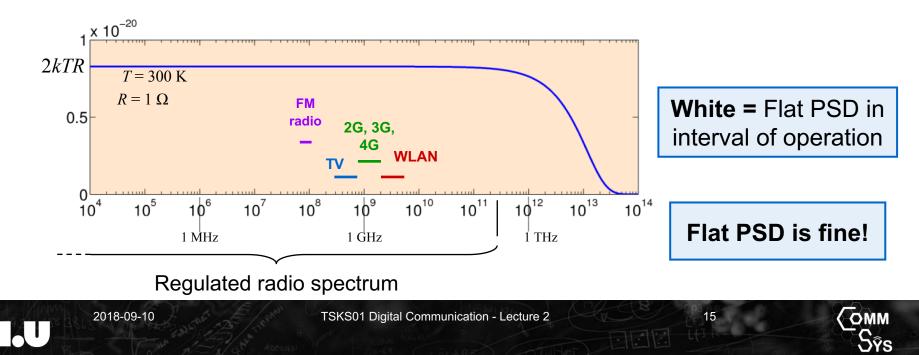
Example: Thermal Noise 3(3) More Exact Model

Gaussian noise with

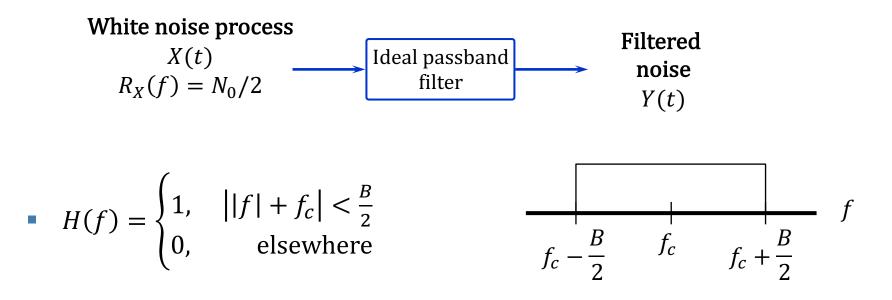
$$R_V(f) = \frac{2Rh|f|}{e^{h[f|/kT} - 1}$$

 $h \approx 6.63 \cdot 10^{-34} \text{ Js}$ (Planck's constant)

Note: $R_V(f) \rightarrow 2kTR$ as $f \rightarrow 0$



Example: Filtering of White Noise Process

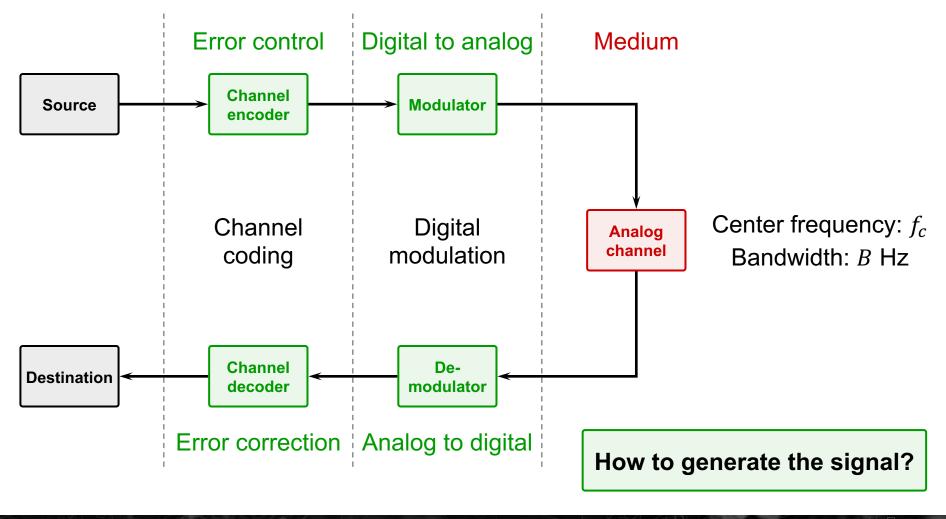


What is the variance of the noise?

$$m_Y(t) = m_X H(0) = 0$$

$$\sigma_Y^2 = E\{Y^2(t)\} = r_Y(0) = \int_{-\infty}^{\infty} R_Y(f) df = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df = N_0 B$$

One-way Digital Communication System



Pulse-Amplitude Modulation (Baseband)

Representation information:

s[n] = Time-discrete signal

Notation:

2018-09-10

- T = Symbol interval
- p(t) =Pulse-shape function

Pulse-Amplitude Modulation (PAM):

$$x(t) = \sum_{n} s[n]p(t - nT)$$

Nyquist Criterion for ISI-Free Communication

Sampling of x(t) at time kT

$$z[k] = x(kT) = \sum_{n} s[n]p(kT - nT)$$

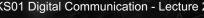
Inter-symbol interference (ISI): z[k] depends on s[n] for $k \neq n$.

Goal: ISI-free communication!

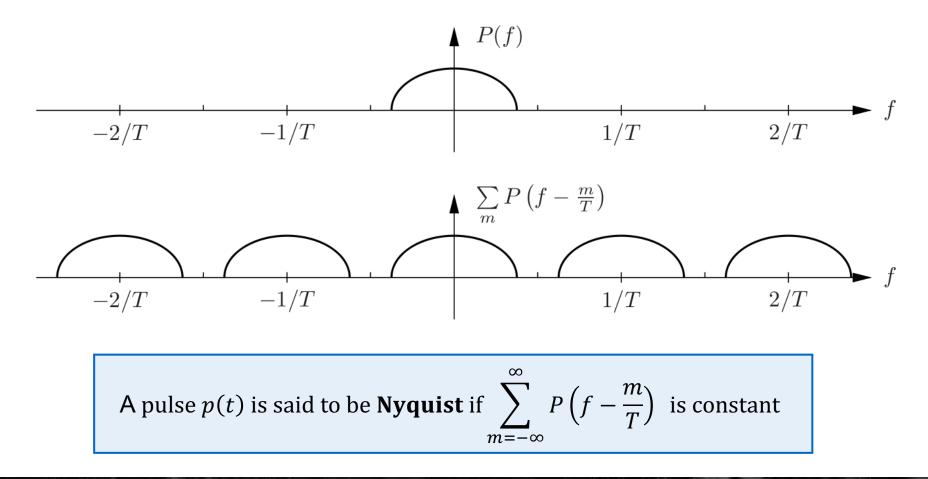
 $z[k] = C \cdot s[k]$ for constant $C \neq 0$.

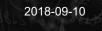
Achieved when
$$p(kT) = C\delta[k] \iff \frac{1}{T} \sum_{m=-\infty}^{\infty} P\left(f - \frac{m}{T}\right) = C$$

Nyquist ISI criterion: Constant!

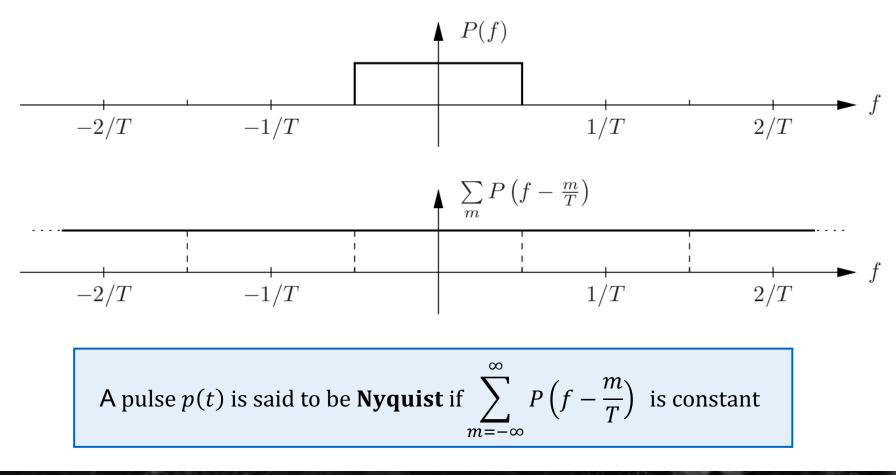


A pulse with bandwidth less than 1/(2T) cannot be Nyquist



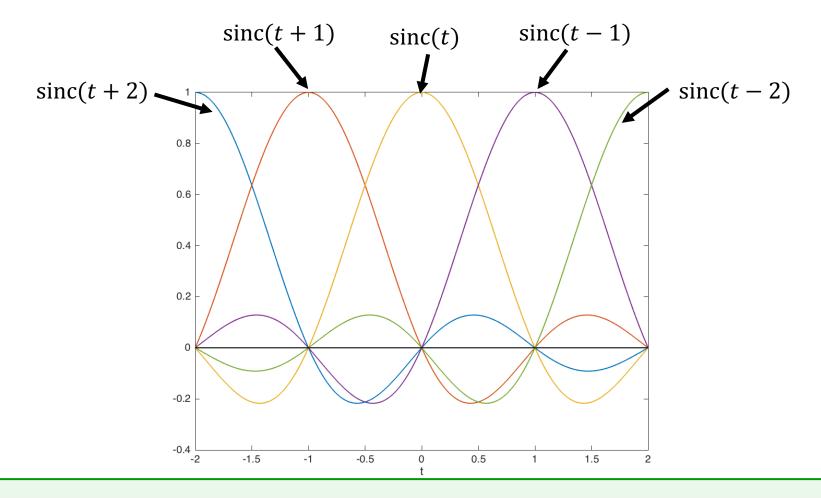


A pulse with bandwidth 1/(2T) has to be a sinc to be Nyquist



OMM

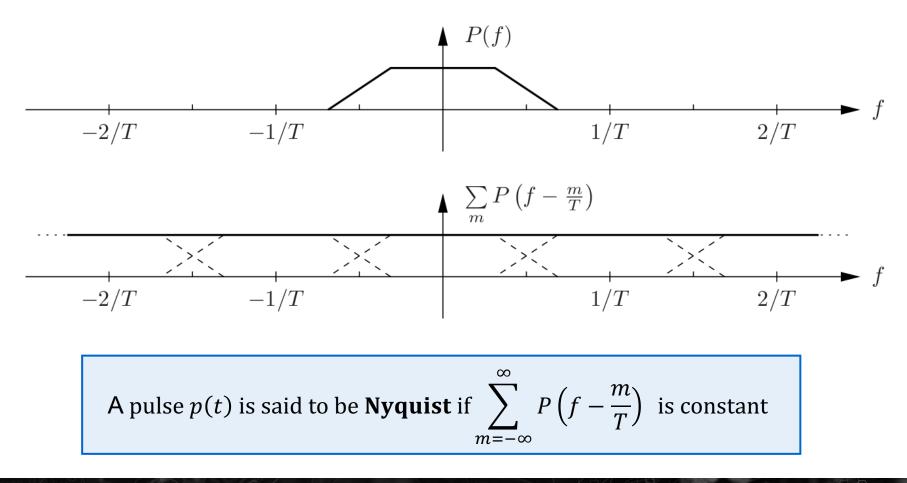
Interpretation of Nyquist in Time-domain



Problems: Non-causal, impossible to implement, sensitive to synchronization errors

OMM

A pulse with bandwidth more than 1/(2T) can have many shapes to be Nyquist



Nyquist Criterion with Receiver Filtering

Recall: Pulse-Amplitude Modulation (PAM):

$$x(t) = \sum_{n} s[n]p(t - nT)$$

Receiver filtering $\gamma(t)$, $\Gamma(f)$:

 $(p * \gamma)(t)$ acts as the pulse

$$(\gamma * x)(t) = \sum_{n} s[n](\gamma * p)(t - nT)$$

New Nyquist criterion:

$$\sum_{m=-\infty}^{\infty} \Gamma\left(f - \frac{m}{T}\right) P\left(f - \frac{m}{T}\right) = C$$

Called: p(t) and $\gamma(t)$ are Nyquist together

TSKS01 Digital Communication - Lecture 2

Raised Cosine Pulse

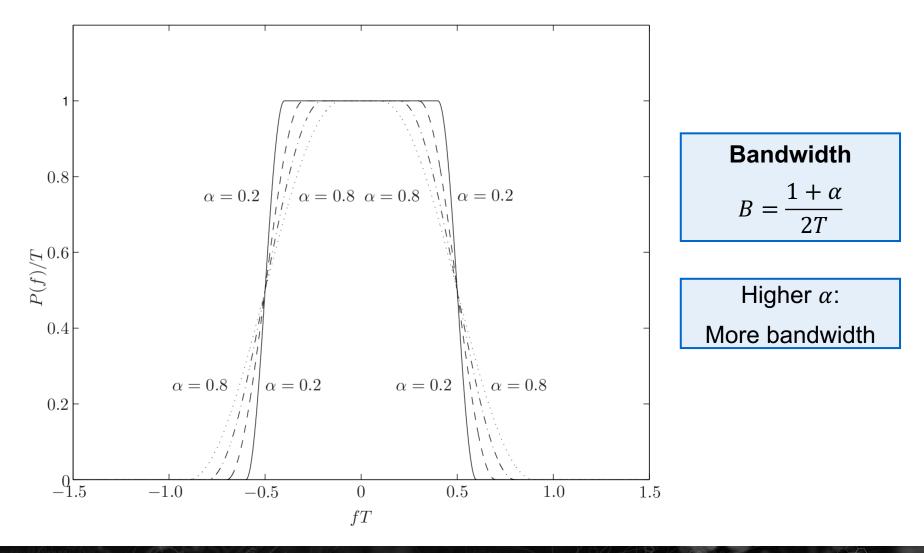
A popular class of pulses bandwidth more than 1/(2T)

Parameter α determines excess bandwidth
 (Called: *roll-off factor* or *normalized excess bandwidth*)

$$P(f) = \begin{cases} T, & |f| \le \frac{1-\alpha}{2T} \\ \frac{T}{2} \left(1 + \cos\left(\frac{\pi T}{\alpha} \left(|f| - \frac{1-\alpha}{2T}\right)\right) \right), & \frac{1-\alpha}{2T} < |f| < \frac{1+\alpha}{2T} \\ 0, & \text{elsewhere} \end{cases}$$
$$p(t) = \operatorname{sinc}\left(\frac{t}{T}\right) \frac{\cos(\alpha \pi t/T)}{1 - (2\alpha t/T)^2}$$

Sinc:p(t) decays as 1/|t| ,Raised cosine:p(t) decays as $1/|t|^3$,

Spectrum of a Raised Cosine Pulse



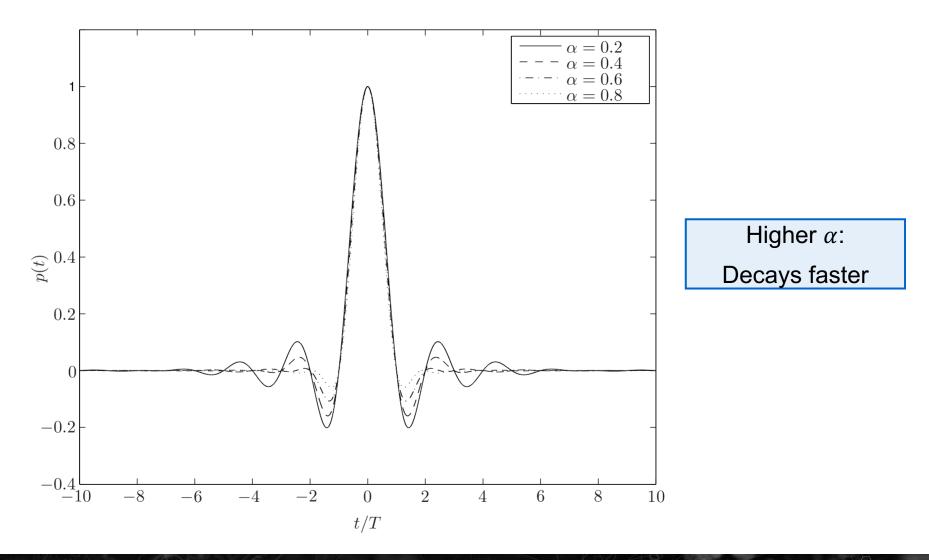
2018-09-10

TSKS01 Digital Communication - Lecture 2

26

OMM

Impulse Response of a Raised Cosine Pulse



cath and append

2018-09-10

TSKS01 Digital Communication - Lecture 2

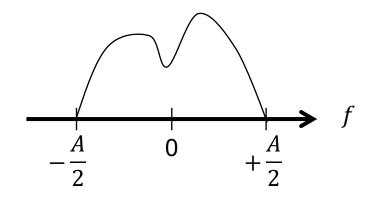
Root-Raised Cosine Pulse

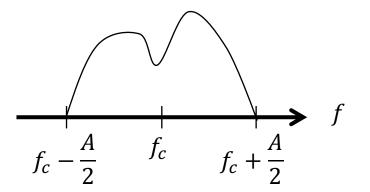
A pulse whose spectrum is the square root of a *Raised cosine* spectrum.

- Set p(t) and $\gamma(t)$ as root-raised cosine pulses
- Nyquist together form a raised cosine pulse together
- Very common in real communication systems!

Bandwidth in Baseband and Passband

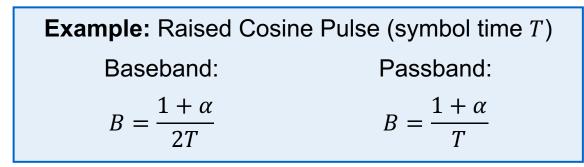
Bandwidth: Distance from smallest to largest frequency

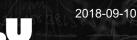




Bandwidth (baseband): $\frac{A}{2}$

Bandwidth (passband): A





LINKÖPING UNIVERSITY

www.liu.se