
Applications of MD Simulations 
in Thin Film Physics



Thin Film Growth



Classical MD studies of mass transport processes

Motivation
-

 

Inter/intralayer mass transport

 

and island morphology

 

are critical factors in 
determining the growth mode of crystals and epitaxial thin films.

-

 

Adatoms

 

and/or vacancies1

 

play the crucial role in promoting mass transport at 
the rates required to achieve layer-by-layer (2D) growth.

-

 

The decisive criteria

 

in establishing and maintaining 2D growth is whether or 
not critical nuclei coalesce

 

on top of growing islands. 

-Adatoms

 

deposited on top 2D islands must descend

 

onto lower terrace sites 
before combining with other adatoms. For most systems (metals, semiconductors, 
ceramics) there is a barrier to passing over step edges2.

1

 

T. Michely and G. Comsa, Surf. Sci 256, 217 (1991).
2

 

Nostrand et. al, PRL 74, 1127 (1995); Kodambak et. al. PRL (2005).



Studied Phenomena

-
 

Adatom/vacancy –
 

clusters interactions

-
 

Small clusters diffusion

-
 

Adatom-vacancy pairs interactions on small clusters

-
 

Dendritic-to-compact morphological transitions

-
 

Coalescence dynamics of small clusters

-
 

Low-energy ion irradiation effects in thin film growth



-
 

System studied: Pt(111) surface 

- Pt  technological important material
-

 
Large set of experimental FIM and STM studies

-
 

1000 K  typical growth temperature

-
 

Results are valid for most fcc metal surfaces: 

FIM measurements of adatom self-diffusion barriers are 
essentially identical on Pt(111)1

 

(0.250.02 eV) and Ir(111)2

 (0.27 eV).

1

 

P. F. Feibelman et. al, PRB 49, 10548 (1994).
2

 

S.C. Wang and G. Ehrlich, PRL 62, 2297 (1989).



Method

-
 

Pt(111) substrate, 4/9 layers of 16x18 atoms each for a 
total of 1152/2592 atoms

-
 

Embedded-atom method (EAM)1

-
 

Molecular Dynamics (MD)
-

 
Statistically independent starting configurations

- T = 1000 K
- Separate runs ranging in time from 2 ps

 
to 2 

 
s

- Total simulation time 
 

several
 

s
- Results stored in movie files with 10 fs

 
resolution

1

 

R. A: Johnson, PRB 39, 12554 (1989).



Adatom self-diffusion on Pt(111)
0.22 eV (EAM)

 
 Present work

0.25 eV (FIM)
 

 Feibelman et. al, PRB 49, 10548 (1994)
0.26 eV (STM)

 
 Hohage et. al. PRL 76, 2366 (1996)

Cluster diffusion on (111) surfaces
Pt6

 


 

1.22 eV (concerted motion)  Present work


 
0.24 eV/ additional atom (Pt6

 

to Pt19

 

)
Ir6

 


 

1.00 eV (FIM)1


 

0.20 eV/additional atom (FIM)1

1

 
Wang & Ehrlich, Surf. Sci. 239, 301 (1990)

Comparison of ED

 

: EAM vs experimental data 



Comparison of MD forces: EAM vs Ab-initio 



Typical clusters configurations

Pt7 Pt19 Pt37

High diffusion and dissociation energy barriers

Most stable cluster configurations on (111) planes



Adatom –
 

clusters interactions

Münger et. al., Surf. Sci. 355, L325 (1996)



Vacancy –
 

clusters
interactions

Pt7 Adatom + Pt7

Pt6 Pt8

Chirita

 

et. al., APL 72, 127 (1998)



Adatom/vacancy pairs
interactions on small clusters

Münger et. al., Surf. Sci. 539, L567 (2003)



Cluster diffusion -
 

Reptation

Chirita

 

et. al., Surf. Sci., 436, L641 (1999)



Cluster Diffusion



Dendritic to compact 
morphological transitions



Low-energy irradiation of single adatoms (monomers)

25 eV5 eV

25 eV 50 eV 50 eV



5 eV 20 eV 25 eV 30 eV 50 eV

Dimer formation 4 5 3 3 3
Exchange

Impact/surface 2 2 4 3

Exchange
Monomer/surface 2 1

Surface vacancy 2

Monomer events statistics



Enhanced monomer migration rates  ion-irradiation effect

Monomer migration rates

•
 

100 ps run •
 

5 x 100 ps runs

D. Adamovic et. al., APL 86, 211915 (2005)



Low-energy ion irradiation studies reveal the 
dynamics of: 

-
 

Cluster reconfiguration & reshaping

-
 

2D-3D cluster transitions

-
 

Cluster disruption

-
 

Point defects (vacancies/interstitials)
 

formation events

-
 

Exchange events involving energetic cluster/surface atoms



 Suppresses 3D multilayer growth.

 Enhances adatom and cluster mobilities.

 Enhances adatom and island number densities.

 General model: all effects promote layer-by-layer growth.

 No direct evidence has been given yet.

Ion-irradiation models span two decades



 Complex, detailed pathways and not fully known.

 Strong incentive for investigations on the atomic scale.

 Non-equilibrium, transient processes.

 Not accessible with experimental techniques –
 

ps timescale.

 Computer simulations (molecular dynamics).

Understanding ion-irradiation processes



Substrate and impact geometry
Top view Side view

16x18 atoms

9 layers

 Periodic in-plane boundary conditions
 Substrate temperature 1000 K



Impact areas and energies

Outside

 

area

Rim area

Core area

Incident energies
5 eV
20 eV
25 eV
30 eV
50 eV



Typical vacancy formation event

Cluster size:

 

Pt3
Impact energy:

 

50 eV
Impact area:

 

Rim

0.0 ps

20.4 ps



Typical cluster disruption event

Cluster size:

 

Pt7
Impact energy:

 

50 eV
Impact area:

 

Rim

0.0 ps

20.0 ps



Typical cluster preservation event

Cluster size:

 

Pt19
Impact energy:

 

50 eV
Impact area:

 

Core

0.0 ps

20.0 ps



Typical 2D-3D transition event

Cluster size:

 

Pt37
Impact energy:

 

30 eV
Impact area:

 

Core

0.0 ps

20.0 ps



Thermal deposition 
(< 1 eV)

Low-energy irradiation 
(< 50 eV)

Multilayer (3D)

Layer-by-layer (2D)

Experimental evidence



[110]

[112]

[111]



 

EPt

 

= 0.2 eV and 5-50 eV, 5 eV intervals



 

We deposit 5 ML at two flux rates



 

R = 10 ns-1, or deposition rate of 5x105

 μm/min, i.e. 103

 

> EB –

 

PVD.



 

R = 1 ns-1, i.e. 102

 

> EB –

 

PVD (25 eV).



Determining growth mode

 Follow motion of all atoms 
individually »

 
adatom 

coverages as f(t).

 Calculate antiphase 
diffraction intensity 
oscillations »

 
growth mode.

 Periodic oscillations 
»

 
layer-by-layer growth.

Monotonic decrease 
»

 
multilayer growth.
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Typical 3D multilayer growth mode



3D Multilayer Growth Mode

2.5 ML



Typical 2D, layer-by-layer growth mode





 

Overall mass transport dominated 
by events in the first 10 ps.



 

Atomic migration in the first 10 
ps interval is strongly correlated 
to EPt

 

. Irradiation interval.



 

Migration in the remaining 10 ps 
intervals is independent of E, 
rather f(T). Thermal period. 



 

Trend is observed at all energies.

Average mass transport





 

Intralayer migration increases by a 
factor of ~ 2x, when EPt

 

increases 
from 5 eV to 20 eV.



 

Thermal component

 

in the 
irradiation interval identified by 
eliminating atoms not directly 
involved in collisions (dotted line 
in Fig.a).



 

Interlayer

 

migration increases by a 
factor of ~ 5x, when EPt

 

increases 
from 5 eV to 20 eV.

The 1st

 

10 ps!
Irradiation-induced 

mass transport



EPt

 

(eV) intra rintra ρinter rinter

5 0.27 2.47 0.27 2.45

25 0.47 4.19 7.49 67.57

50 0.75 6.75 19.34 174.05

Intralayer

 

mass transport Interlayer

 

mass transport

)...( 321 ndddd 

nddddddr nnn )...(; 321 

Quantification: 1st

 

10 ps
 

vs. thermal
 

mass transport

d1

 

– 1st

 

10 ps interval

d2

 

...dn

 

–

 

all other 10 ps intervals 



Kinetic Pathways promoting layer-by-layer growth



 

Adatom scattering, surface channeling, dimer formation –

 

all energies1.

1

 

D. Adamovic et. al., APL 86, 211915 (2005)
2

 

D. Adamovic et. al., TSF 515, 2235 (2006)



Kinetic Pathways promoting layer-by-layer growth



 

Adatom scattering, surface channeling, dimer formation –

 

all energies1.



 

Onset of significant interlayer migration at EPt

 



 

15 eV1,2.

1

 

D. Adamovic et. al., APL 86, 211915 (2005)
2

 

D. Adamovic et. al., TSF 515, 2235 (2006)



Typical ion-induced exchange (interlayer) event

Cluster size:

 

Pt7
Impact energy:

 

30 eV
Impact area:

 

Rim

0.0 ps 0.2 ps

0.9 ps 1.6 ps 20.0 ps



Kinetic Pathways promoting layer-by-layer growth



 

Adatom scattering, surface channeling, dimer formation –

 

all energies1.



 

Onset of significant interlayer migration at EPt

 



 

15 eV1,2.



 

Cluster disruption observed from EPt

 



 

20 eV1,2.

1

 

D. Adamovic et. al., APL 86, 211915 (2005)
2

 

D. Adamovic et. al., TSF 515, 2235 (2006)



Typical cluster disruption event

Cluster size:

 

Pt7
Impact energy:

 

50 eV
Impact area:

 

Rim

0.0 ps 0.17 ps

0.4 ps 0.94 ps 20.0 ps



Kinetic Pathways promoting layer-by-layer growth



 

Adatom scattering, surface channeling, dimer formation –

 

all energies1.



 

Onset of significant interlayer migration at EPt

 



 

15 eV1,2.



 

Cluster disruption observed from EPt

 



 

20 eV1,2.



 

Probability of 3D island formation decreases with increasing EPt
2.

1

 

D. Adamovic et. al., APL 86, 211915 (2005)
2

 

D. Adamovic et. al., TSF 515, 2235 (2006)



Typical adatom incorporation event

Cluster size:

 

Pt37
Impact energy:

 

25 eV
Impact area:

 

Rim

0.0 ps 0.3 ps

0.5 ps 0.6 ps 20.0 ps



Kinetic Pathways promoting layer-by-layer growth



 

Adatom scattering, surface channeling, dimer formation –

 

all energies1.



 

Onset of significant interlayer migration at EPt

 



 

15 eV1,2.



 

Cluster disruption observed from EPt

 



 

20 eV1,2.



 

Probability of 3D island formation decreases with increasing EPt
2.



 

The combination of all these irradiation-induced effects,

 

in the 15-20 eV 
energy interval,

 

 transition from 3D multilayer to 2D layer-by-layer 
growth.

1

 

D. Adamovic et. al., APL 86, 211915 (2005); TSF 515, 2235 (2006)
2

 

D. Adamovic et. al., PRB (in press)



Test against inherent MD limitations



 

Typical MD simulations of film growth use very high fluxes leading to 
unrealistic deposition rates (104

 

to 106

 

or more higher).



 

We deposit 5 ML, at 25 eV and R = 1 ns-1, flux rate only 102

 

> EB-PVD.



 

Single MD run, 1.5 μs-long, spanning 1.5x109

 

time steps.



 

First attempt to simulate deposition in a fully deterministic manner at 
deposition rates approaching experimental values.



1 ML 4 ML





Use of realistic (lower MD) deposition rates



 

Irradiation-induced mass transport unaffected as R decreases by 10x.



 

Decreases by 2x

 

in intralayer, and 7x

 

in interlayer mass transport.



 

Longer times for thermal accommodation:
-

 

significant increase in number of nucleation and coalescence events
-

 

fewer itinerant adatoms & fewer but larger 2D clusters
-

 

reduced probability for interlayer exchanges in the thermal period.



 

Mass transport is still dominated by events occurring in first 10 ps.



R (ns-1) intra rintra ρinter rinter

10 0.47 4.19 7.49 67.57

1 0.10 10.39 4.86 481.15

Intralayer

 

mass transport Interlayer

 

mass transport

)...( 321 ndddd 

nddddddr nnn )...(; 321 

Quantification: 1st

 

10 ps
 

vs deposition rates

d1

 

– 1st

 

10 ps interval

d2

 

...dn

 

–

 

all other 10 ps intervals 

Obs: Very significant increases in rintra

 

(~2x) and rinter

 

(~7x)!
Still 102

 

– 104

 

off real deposition rates!!!



Atomic distribution in deposited layers
 Broader distributions and 

lower peacks for higher 
energies and sequentially 
deposited layers.

 Signature of mass transport 
leading to 2D growth 

Interlayer Mass Transport



Atomic distribution in substrate



 

10 eV –

 

No interlayer exchange 
with topmost substrate layer.



 

20 eV –

 

interlayer exchanges are 
triggered.



 

50 eV –

 

50% of atoms in topmost 
substrate layer move upwards, up 
to the 5th deposited layer.



 

Similar but much weaker 
behaviour in next substrate layer.



 

50 eV –

 

80% of atoms remain in 
their original lattice positions.

Interlayer Mass Transport
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[d

]

Layers Deposited [ML]

E = 20 eV

E = 50 eV

E = 10 eV

 Strong dependence on 
irradiation energy.

 10 eV –
 

2% of atoms 
contribute to interlayer 
migration events.

 20 eV –
 

increase by a factor 
of 5 compared to 10 eV.

 50 eV –
 

50% of atoms are 
involved in interlayer 
migration events.

Irradiation Interval = 1st

 

10 ps

Interlayer Mass Transport



E = 10 eV

E = 20 eV

E = 50 eV

In
te

rla
ye

r m
ig

ra
tio

n 
[d

]

Layers Deposited [ML]

Thermal Period

 Energy dependence is 
considerably weaker in the 10 
to 20 eV interval.

 50 eV –
 

increase by a factor of 
3 compared to 10 or 20 eV.

Migration over 1d dominates 
during the thermal tail.

Most events involve the 
exchange between incident and 
surface atoms.

Interlayer Mass Transport
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n 
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]

Normalized Events

E = 10 eV

E = 20 eV

E = 50 eV

 Irradiation
 

= Black bars.

 Thermal
 

= White bars.

 10 eV –
 

only 1d events.

 50 eV –
 

full spectrum of 
migrations events.

 50 eV –
 

irradiation induced 
part increases by ~ 100.

Total interlayer migration

Interlayer Mass Transport
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]

Energy [eV]

Irradiation

Thermal

Directional interlayer migration



 

Black bars = Migration in the 
upward direction.



 

White bars = Migration in the 
downward direction.



 

Starting from 20 eV, upward 
migration dominates in the 
irradiation interval.



 

Downward migration dominates 
during the thermal tail.



 

One order of magnitude difference 
between irradiation and thermal 
components.

Interlayer Mass Transport
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Layers Deposited [ML]

E = 10 eV

E = 20 eV

E = 50 eV

 90% of atoms involved in 
intralayer events.

 10 eV –
 

most impacts result in 
migration with less than 10 fcc-

 hcp (l) distances.

 20 eV –
 

migration distance is 
almost double.

 50 eV –
 

large migration distances 
primarily due to scattering and 
cluster disruption.

Intralayer Mass Transport

Irradiation Interval = 1st

 

10 ps



In
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ye

r m
ig
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tio

n 
[l]

Layers Deposited [ML]

E = 10 eV

E = 20 eV

E = 50 eV

 Significantly larger migration 
distances at all energies.

 Expected effect at the temperature 
chosen for the MD experiment.

 A decrease in temperature would 
lead to an exponential decrease in 
intralayer mass transport.

Thermal Period

Intralayer Mass Transport



E = 10 eV E = 20 eV E = 50 eV

Intralayer Mass Transport

Total intralayer migration



Intralayer Mass Transport

Layer-by-layer growth at 20 eV

 Intralayer activity is strongly 
correlated to layer coverage.

Maximum intralayer transport is 
observed at coverages of 0.05 ML, 
in agreement with experiments1.

 Significant adatom contribution to 
intralayer migration –

 
dotted lines.

1T. Michely, G. Comsa et. al., Surf. Sci. 365, 187 
(1996)

Layer 2

Layer 3

Layer 4



Sputtering Probability



 

Calculated as the ratio of atoms out of 
interaction range after 5ML and total 
number of atoms deposited.



 

No sputtering observed up to ~ 20 eV.



 

Exponential increase up to 50 eV.



 

Overall still under 1% probability.



Conclusions



 

Multi-billion time step MD of homoepitaxial growth from low-energy             
(EPt

 

= 5-50 eV) hyperthermal Pt atoms and thermal beams (EPt

 

= 0.2 eV).



 

Transition from 3D multilayer toward 2D layer-by-layer growth is observed at 
EPt

 



 

20 eV. Layer-by-layer growth is maintained until 50 eV.



 

Simulations allow to isolate with unprecedented accuracy irradiation-induced 
and thermally-activated effects on mass transport rates.



 

Irradiation-induced

 

processes occurring during the first 10 ps

 

following the 
arrival of each hyperthemal atom are determinant in promoting 2D

 

growth.



 

Primary kinetic pathways:
-

 

ion-induced exchange of atoms between layers (interlayer)
-

 

direct incorporation of energetic atoms into clusters
-

 

cluster disruption



Conclusions



 

Mass transport is strongly correlated to the deposition energy:
-

 

Interlayer migration increases by two orders of magnitude (5 –

 

50 eV).
-

 

Intralayer migration increases by a factor of 3 in same interval.



 

At 20 eV, upward interlayer migration becomes the dominant process (adatom-

 
vacancy pairs) while cluster disruption dominates intralayer migration.



 

Maximum intralayer transport is observed at coverages of 0.05 ML. Single atoms 
play a major role in promoting 2D layer-by-layer growth. 



 

Irradiation-induced

 

effects reported here are increasingly important at low 
temperatures, where thermal migration decays exponentially.



 

These results are expected to be valid for most fcc(111) metal films.

D. Adamovic

 

et. al., PRB 76, 115418 (2007)
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