TSKS01 Digital Communication Lecture 4

Digital Modulation – Basis Functions and Basic Signal Detection

Emil Björnson

Department of Electrical Engineering (ISY) Division of Communication Systems

LINKÖPING UNIVERSITY

Last Time – Digital Modulation

Signals:

AWGN:

 $s_i(t) = \sum_{j=0}^{N-1} s_{i,j} \phi_j(t), \qquad i = 0, 1, \dots, M-1,$ $0 \leq t < T$ **ON** basis $W(t) = \sum_{j=0}^{N-1} W_j \phi_j(t) + W'(t)$ Irrelevant $W_i = (W, \phi_i)$

Gaussian with mean 0.

Received:
$$X(t) = s_i(t) + W(t) = \sum_{j=0}^{N-1} X_j \phi_j(t) + W'(t)$$
 $X_j = (X, \phi_j)$
Gaussian with mean $s_{i,j}$.

Vectors:

$$X = \overline{s}_{i} + W$$

$$X = \overline{s}_{i} + W$$

$$X_{0}$$

$$S_{i,0}$$

$$S_{i,0}$$

$$W_{0}$$

$$W_{0}$$

$$W_{0}$$

$$W_{N-1}$$

Orthogonal noise components are statistically independent. $\sigma_{W_i}^2 = \sigma_{X_i}^2 = R_W(f) = N_0/2$

Indicator Function

Definition: The *indicator function* $I_A(t)$ of the set A is given by

$$I_A(t) = \begin{cases} 1, & t \in A \\ 0, & \text{elsewhere} \end{cases}$$

Examples:

OMM

Example of Basis Functions (N = 1)

Time-limited baseband signal

$$\tilde{\phi}_0(t) = \sqrt{\frac{1}{T}} I_{\{0 \le t < T\}}(t)$$

• Time-limited passband signal (carrier frequency f_c)

$$\phi_0(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) I_{\{0 \le t < T\}}(t)$$

•
$$\|\phi_0\|^2 = \frac{2}{T} \int_0^T \cos^2(2\pi f_c t) dt = 1 - \frac{2}{T} \int_0^T \cos(4\pi f_c t) dt$$

Equal to one if $4f_cT$ is an integer

TSKS01 Digital Communication - Lecture 4

Example of Basis Functions (N = 2)

• Time-limited passband signal (carrier frequency f_c)

$$\phi_0(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t) I_{\{0 \le t < T\}}(t)$$

$$\phi_1(t) = -\sqrt{\frac{2}{T}} \sin(2\pi f_c t) I_{\{0 \le t < T\}}(t)$$

• When are these functions orthogonal?

$$\int_{-\infty}^{\infty} \phi_0(t)\phi_1(t)dt = \dots = -\frac{1}{T}\int_0^T \sin(4\pi f_c t) dt$$

Equal to zero if $2f_cT$ is an integer

Energy Spectra: $|\Phi_0(f)|$ and $|\Phi_1(f)|$

Example of Basis Functions (N > 2)

- How to construct more than two basis functions?
 - One can show that $\cos(2\pi f_0 t) I_{\{0 \le t < T\}}(t)$ and $\cos(2\pi f_k t) I_{\{0 \le t < T\}}(t)$ are orthogonal if $(f_0 - f_k)T$ is an integer
- Proposal (N/2 is an integer):

2018-09-24

$$f_{k} = f_{0} + \frac{k}{T} \quad \text{for } k = 0, 1, \dots, \frac{N}{2} - 1$$
$$\phi_{2k}(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_{k}t) I_{\{0 \le t < T\}}(t)$$
$$\phi_{2k+1}(t) = -\sqrt{\frac{2}{T}} \sin(2\pi f_{k}t) I_{\{0 \le t < T\}}(t)$$

N/2 pairs of cosine and sine

$$\phi_{2k+1}(t) = -\sqrt{\frac{2}{T}}\sin(2\pi f_k t) I_{\{0 \le t < T\}}(t)$$

Energy Spectra: $|\Phi_n(f)|$ n = 0, ... N - 1

Single and Multi Carrier Modulation 1(2)

- Given total bandwidth *B*
 - Approximate bandwidth: count only the main lobe
- Single Carrier (N = 2)

2018-09-24

•
$$B = \frac{2}{T} \quad \leftrightarrow \quad T = \frac{2}{B}$$

• Multi Carrier (N > 2, N/2 integer)

•
$$B = \left(\frac{N}{2} + 1\right) \cdot \frac{1}{T} \qquad \leftrightarrow \qquad T = \left(\frac{N}{2} + 1\right) \cdot \frac{1}{B}$$

- Example: N = 1024: T is 256.5 times larger with multi carrier
 - Main lobe is 256.6 times smaller

Single and Multi Carrier Modulation 2(2)

- Frequency response of channel
 - Changes with frequency
 - Approx. fixed over small interval

$$h(t) = \delta(t - \tau_1) + \delta(t - \tau_2) + \delta(t - \tau_3) + \delta(t - \tau_4)$$

Multi Carrier

Select *N* large enough: Make H(f) approximately constant over the main lobe 2/T

Can ignore channel:

This is what we will do right now

2018-09-24

Receiving a Modulated Signal

$$X_j \triangleq (X, \phi_j)$$

Next topic: The demodulator and vector detector

2018-09-24

TSKS01 Digital Communication - Lecture 4

Demodulation

Projections: $s_{i,j} = (s_i, \phi_j) = \int_0^T s_i(t) \phi_j(t) dt$ Signals are
projected on
basis functionsNoise is
projected on
basis functions $W_j = (W, \phi_j) = \int_0^T W(t) \phi_j(t) dt$ Signals are
projected on
basis functions $X_j = (X, \phi_j) = \int_0^T X(t) \phi_j(t) dt$ Do this! $X_j = s_{i,j} + W_j$ $j \in \{0, 1, \dots, N-1\}.$

TSKS01 Digital Communication - Lecture 4

Correlation Receiver

2018-09-24

TSKS01 Digital Communication - Lecture 4

Сомм Sүs

13

Matched Filters

Definition:

A filter with impulse response $h_j(t) = \phi_j(T - t)$ is matched to $\phi_j(t)$

Example:

Usage $(\phi_j * h_j)(t)$:

Orthogonal signal $\phi_i(t)$:

Then $(\phi_i * h_j)(t)$:

Zero at
$$t = T$$

 $(\phi_i(t),\phi_j(t)) = 0$

2018-09-24

Demodulation Using Matched Filters

Filter: $h_j(t) \triangleq \phi_j(T-t)$ Matched to $\phi_j(t)$

Output: $Y_j(t) = (X * h_j)(t)$ \checkmark Do this! $= \int_{-\infty}^{\infty} X(\tau) h_j(t-\tau) d\tau = \int_{t-T}^{t} X(\tau) \phi_j(T-t+\tau) d\tau$

Sample at t = T: $Y_j(T) = \int_0^T X(\tau) \phi_j(\tau) d\tau = (X, \phi_j) = X_j$ And this!

Matched Filter Receiver

2018-09-24

TSKS01 Digital Communication - Lecture 4

Comm Sîs

16

The Vector Detector

The task of the vector detector:

Observe \bar{x} and output \hat{a} according to a well chosen decision rule, designed to minimize the error probability.

What do we know?

All entities are realizations of stochastic variables.

Use statistical descriptions of those stochastic variables!

Vector Detection

Received vector: \overline{x}

Goal: Minimize the error probability

Equivalent decision rule:

Set $\hat{a} = a_i$ if $\Pr\{A = a_k | \overline{X} = \overline{x}\}$ is maximized for k = i.

Detection

Maximum Likelihood (ML) Detection

Assumption: $\Pr\{A = a_i\} = \frac{1}{M}$ for i = 0, 1, ..., M - 1

ML decision rule: Set $\hat{a} = a_i$ if $f_{\bar{X}|A}(\bar{x}|a_k)$ is maximized for k = i.

Independent variables:

$$f_{\overline{X}|A}(\overline{x} \mid a_k) = \prod_{j=0}^{N-1} f_{X_j|A}(x_j \mid a_k) = \prod_{j=0}^{N-1} \frac{1}{\sqrt{\pi N_0}} \cdot e^{-(x_j - s_{k,j})^2/N_0} = (\pi N_0)^{-N/2} \cdot e^{-\frac{1}{N_0} \sum_{j=0}^{N-1} (x_j - s_{k,j})^2}$$

Natural logarithm (strictly increasing function): $\ln\left(f_{\bar{X}|A}(\bar{x} \mid a_k)\right) = -\frac{N}{2}\ln(\pi N_0) - \frac{1}{N_0}\sum_{j=0}^{N-1}(x_j - s_{k,j})^2 = -\frac{N}{2}\ln(\pi N_0) + \frac{1}{N_0}d^2(\bar{x}, \bar{s}_k)$

Equivalent ML rule: Set $\hat{a} = a_i$ if $d(\bar{x}, \bar{s}_k)$ is minimized for k = i.

ML Decision Regions

Detect \overline{x} as being the nearest signal.

Result:

Decision regions consist of all points closest to a signal point.

Notation:

 B_i is the decision region of the signal vector \overline{s}_i . Thus also of the signal $s_i(t)$ and of the message a_i .

Borders are orthogonal to straight lines between signals: In 2 dimensions: Lines. In 3 dimensions: Planes. Higher dim: Hyperplanes. Borders cut the lines mid-way.

Error Probability

Symbol error probability:

$$P_{e} = \Pr\left\{\hat{A} \neq A\right\} = \sum_{i=0}^{M-1} \Pr\left\{A = a_{i}\right\} \cdot \Pr\left\{\hat{A} \neq a_{i} \mid A = a_{i}\right\}$$
$$= \sum_{i=0}^{M-1} \Pr\left\{A = a_{i}\right\} \cdot \Pr\left\{\overline{X} \notin B_{i} \mid A = a_{i}\right\}$$

ML detection: $Pr\{A = a_i\} = \frac{1}{M}$ for i = 0, 1, ..., M - 1:

$$P_{e} = \frac{1}{M} \sum_{i=0}^{M-1} \Pr\{\overline{X} \notin B_{i} \mid A = a_{i}\} = \frac{1}{M} \sum_{i=0}^{M-1} \int_{\overline{x} \notin B_{i}} \cdots \int_{\overline{X}|A} (\overline{x} \mid a_{i}) dx_{0} \cdots dx_{N-1}$$

This is generally hard to calculate!

TSKS01 Digital Communication - Lecture 4

Special Case: Two signals in N = 1 Dimension

$$\Pr\left\{\overline{X} \notin B_0 \mid A = a_0\right\} = \Pr\left\{\overline{X} \in B_1 \mid A = a_0\right\} = \Pr\left\{X_0 > \frac{s_{0,0} + s_{1,0}}{2} \mid A = a_0\right\}$$
$$= \Pr\left\{W_0 > \frac{s_{0,0} + s_{1,0}}{2} - s_{0,0} \mid A = a_0\right\} = \Pr\left\{W_0 > \frac{s_{1,0} - s_{0,0}}{2}\right\} \qquad \text{This value}$$

 $= \Pr\left\{ W_0 > \frac{d(s_0, s_1)}{2} \right\} = Q\left(\frac{d(s_0, s_1)/2}{\sqrt{N_0/2}}\right) = Q\left(\frac{d(s_0, s_1)}{\sqrt{2N_0}}\right)$

This works in all directions.

OMM

Similarly for $\Pr\{\overline{X} \notin B_1 \mid A = a_1\}$. $\Rightarrow P_e = Q(\cdots)$

LINKÖPING UNIVERSITY

www.liu.se