

Ted Johansson, ISY ted.johansson@liu.se

 5.2 Transmission power and spectrum Output power defined differently in different standards: GSM, WCDMA, (LTE): at antenna port (ARP). other older systems (e.g. CDMA): effective radiated power (ERP) = (power supplied to antenna) * (antenna gain relative to a half-wave dipole in a given direction), gain = 2.15 dBi ERP[dB] = TX_{pwr_ant} + G_{ant} - 2.15, or effective isotropic radiated power (EIRP) = 	 Transmission power and spectrum Transmission power measured in frequency domain = integrated power over bandwidth. E.g. WCDMA, BW=3.84 MHz, (1+α) RRC, α = 0.22 => 1.22 x 3.84 = 4.68 MHz BW for integration. Some standards (e.g. CDMA IS-95): not well defined.
 or effective isotropic radiated power (EIRP) = (power supplied to antenna) * (antenna gain relative to a isotropic antenna), gain = 0 dBi EIRP[dB] = TX_{pwr_ant} + G_{ant}. Usually ARP is used. 	0.6 0.6 0.4 0.2 0 -1 -0.61-0.5 0 0.5 0.61 1 0.7 0 0.5 0.61 1
TSEK38 Radio Frequency Transceiver Design 2019/Ted Johansson	TSEK38 Radio Frequency Transceiver Design 2019/Ted Johansson UNIVERSITY

³³
5.6.1 Architecture selection
Direct conversion: Usually no IF channel filter used, so less advantage. Less spurious emission (no IF). More current since gain is rather in the RF.
Today, power consumption/efficiency is very important (battery life for portable units, energy efficiency and heat removal for fixed units).
A number of "new" architectures and PA operation to improve efficiency: Polar modulation (Envelope Tracking, ET), Outphasing, Doherty, Digital PA (DPA), PWM.

TSEK38 Radio Frequency Transceiver Design 2019/Ted Johansson

35 5.6.2 TX power and gain · Output power in different standards: • GSM, WCDMA, (LTE): at antenna port (ARP) · other older systems (e.g. CDMA): effective radiated power (ERP) = -25 PowerGain (power supplied to antenna) * (antenna gain 30 relative to a half-wave dipole in a given direction), gain = 2.15 dBi $ERP[dB] = TX_{pwr_ant} + G_{ant} - 2.15$ or effective isotropic radiated power (EIRP) = (power supplied to antenna) * (antenna gain relative to a isotropic antenna), gain = 0 dBi EIRP[dB] = TXpwr_ant + Gant Usually ARP is used. TSEK38 Radio Frequency Transceiver Design 2019/Ted Johansson

5.6.3 TX AGC

- GSM terminal: commands from base station, 2 dB gain/ power steps over 30 dB.
- CDMA: very fine steps of 0.25 1 dB.

		Nominal Maximum	Nominal Minimum	Dynamic	Power
	Power	Power	Power	Range	Control
Systems	Class	(dBm)	(dBm)	(dB)	Method
AMPS	III	28	8	≥ 20	BS commends
CDMA 800	III	23	-50	≥ 73	Open and closed loops
CDMA 1900	п	23	-50	≥ 73	Open and closed loops
GSM 900	IV	33	5	≥ 28	BS commands
DCS 1800	I	30	0	≥ 30	BS commands
TDMA	III	28	8	≥ 20	BS commands
WCDMA	IV	21	-50	≥ 71	Open and closed loops

38

www.liu.se