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Lecture schedule

w4:

+ Let: Introduction (Ch 1)

+ Le2: Fundamentals of RF system modeling (Ch 2)

+ Le3: Superheterodyne TRX design (Ch 3.1)
w6:

* Le4: Homodyne TRX design (Ch 3.2)

* Le5: Low-IF TRX design (Ch 3.3)

» Le6: Systematic synthesis (calculations) of RX (Ch 4)
w7:

« Le7: Systematic synthesis (continued)

« Le8: Systematic synthesis (calculations) of TX (Ch 5)
w8:

[+ Le9: Systematic synthesis (continued) |
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Repetion of Lecture 8

« Systematic Transmitter Synthesis
+ Introduction
+ Transmission power and spectrum
* Modulation accuracy

II'“ LINKOPING TSEK38 Radio Frequency Transceiver Design 2019/Ted Johansson

UNIVERSITY

5.1 Introduction

- FDD/TDD.

« Direct-conversion, heterodyne.
* Less filter requirements.

» "Deterministic”, stronger signal.

Parameters: (maximum) output power, linearity,
EVM, ACPR, emissions (spectrum mask), power
consumption. (Noise not that important.)

Nonlinearities mostly from the PA (last amplifier).
» Power consumption/efficiency set mostly by the PA.
» AGC/gain stepping.
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5.2 Transmission power and spectrum

+ Output power defined differently in different standards:

+ GSM, WCDMA, (LTE): at antenna port (ARP).

+ other older systems (e.g. CDMA): effective
radiated power (ERP) =
(power supplied to antenna) * (antenna gain
relative to a half-wave dipole in a given direction),
gain = 2.15 dBi
ERP[dB] = TXpwrﬁant + Gant - 215,

« or effective isotropic radiated power (EIRP) =
(power supplied to antenna) * (antenna gain
relative to a isotropic antenna), gain = 0 dBi
EIRP[dB] = TXpwr_ant + Gant.

» Usually ARP is used.
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Transmission power and spectrum

» Transmission power measured in frequency domain =
integrated power over bandwidth.

. E.g. WCDMA, BW=3.84 MHz, (1+a) RRC, 0. =0.22 =>
1.22 x 3.84 = 4.68 MHz BW for integration.

* Some standards (e.g. CDMA 1S-95): not well defined.

b
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5.3 Modulation accuracy (linearity)

5.3.1 Error Vector Magnitude (EVM): the deviation of the constellation
points from their ideal positions.

eldeal Sideal - Smeas = €
o  oMeasured

EVMgwus:

- !
EVM = sl -at.r} 7: slewr) 1. (5.3.11)

E{ atk, )\2} I:‘{ [atk, )|2}

EVM is the main TRX linearity measure (limitation) in WLAN.
[ KT
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EVM 8

Table 6.5.2-1 EVM requirements.

*« EVM measured in % or dB.

Required EVM
QPSK 175%
. [ 16QAM I 125%
* Typically 5-15 %, -30 — -20 dB I G4QA! i 5%
= LTE rel. 10
1 —40,0 ‘Modulation (Coding Rate ::.‘ldi; :(:1;:‘1:;
15 -36,5 BPSK 12 5 5
2 340 QPsK 12 -10 10 For CDMA
s w - 5
25 -320 Team I g m waveform, a
3 305 Leaam 2 & 2 quality factor is
saan »n 2 = )
35 29,1 B 3 0 25 defined:
5 80 s 556 0 7 1
’ 2560AM 34 /A 30 o=
5 -260 2560AM 5/6 A 2 = 1 2
+EVM
S WLAN 802.11ac
7 -231 ’ (5.3.13a)
8 =219
9 =209
10 200 EVM2 can be considered as 1/SNR
EVM [dB] = (E [%] /100)? in dB
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EVM degradation

5.3.2 Intersymbol interference (ISI)
5.3.3 Close-in phase noise of LO
5.3.4 Carrier leakage
5.3.5 Other factors
5.3.5.1 1Q imbalance
5.3.5.2 Nonlinearities
5.3.5.3 In-channel bandwidth noise
5.3.5.4 Reverse LO modulation (not)

EVM degradation

5.3.2 Intersymbol interference (ISI)
+ Non-ideal filter => distortion in delay and magnitude

« Each pulse extends in time and spills to the time slot of other pulses.
This is called Inter Symbol Interference (ISlI).

« EVM degradation from filter/ISI in TX not a major problem since no tight
filtering are used in modern designs.

« Typically contribution <5 % and also can be compensated by

predistortion.
-+ % =

Total EVM: N AT :
EVM3, = EVM}, + EVM}, + EVMZ, + EVM + EVMZ,,;, + EVMZ . + EVMZ,,, e e I e R AN Bt
ZERO
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EVM degradation EVM degradation: another view 2
-85dBc/Hz
5.3.3 Close-in phase noise of LO PN saaph
. . EVM?2, =2x$10 1 Af, B
+ Phase noise from VHF and UHF LO in the modulator and o 4 7k |
up-converter in the TX. - ~1030Bc/H
« If the synthesizer loop bandwidth is reasonably wide: -112dBe/Hz
* Example:
N We integrate over BW 025MHz | +0.25 MH
Noise power:  Prpiase 22:10 1 - BW 10,5 (5.3.25) T
-0.5MHz
+0.5MHz
118 -112 -103
EVM}, =2x(250x10°x10 1 +125x10°x10 1 +62.5x10°x10 0
s 5.3.26 e Sl
[Prptase EN210 1 BW, i i, - (5.3.26) +31.25x10°x10 10 +15.62x10°x1010)
=2.34x107
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EVM,, =1.53x107 =1.53%
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EVM degradation

5.3.4 Carrier leakage

« DC offsets in the BB | and Q channels can cause carrier
leakage (CL or CF or CFT):

' ower ratio:

a, () =I(t)cosg(t) + Al b v V

Cy =10log ~<T = 20log —7=1
Pre

Tx_ag

[& o G
EVM ¢rr =N10% = /310 10
k=1

ag()=Q()sing(t) + AQy. ,
output from modulator:
frn@®= a; (t)cosm t — a‘Q (t)sinw.t
= A(t)coslw, 1 + p(0)]+ A, cos(w 1 + AB),

A =yATG + 00

EVM degradation

5.3.5.1 1Q imbalance i D Image
+ 1Q imbalance generate an ﬂ-Q

image of the transmitted signal
+ Similar to RX

P
IR =10log "<

Signal [
1+2(1+8)cose +(1+9)* gw

IR =10log >
1-2(1+d)cose +(1+9d)°

Amplitude Imbalance

d - gain imbalance
¢ - phase imbalance
IR

EVM?, =101

e istmcs Exron
* In practice IR > -30dB = EVMr <3.2%
A0 =tan” (AQ,, /AT,.). examples in the books p. 326 .
(0. /A%) P p see book p. 328 for details
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5.3.6 Total EVM
« |f EVM contributions are uncorrelated:

Nphase,i img
i=1

2
=\/I£VM,ZS, + Y EVM i + EVM Gy + EVM D 4o .

(5.3.46)

(please note the inconsistent names/indices of the different
EVM contributions in the book)
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Systematic Transmitter Synthesis (I1)

* 5.4 Adjacent and Alternate Channel Power
» 5.5 Noise Emissions
+ 5.6 System design considerations

» 5.6.1 Architecture selection

+ 5.6.2 Line-up, Gain Distribution

*+ 5.6.3 TXAGC
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5.4 Adjacent and Alternate Channel Powe1r7

» Adjacent channel power ratio (ACPR)

» Spectral regrowth due to PA nonlinearity
(intermodulation)

* Integrated in a channel

S +AB
[sPD()-df

__h
ACPR= fo .y‘u', 2

[spD(fy-df

fo-BW[2

! Adjacent channet |
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Adjacent and Alternate Channel Power

Radio Std

AvglHold>10110
Radio Device: BTS

15-97D/98D 0|
(Center 1.92 GHz Span 24.68 Mz
#Res BW 100 KHz #Sweep 29 ms|

Total Carrier Power

Upper
Carrier Power
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Adjacent and Alternate Channel Powe?9

* 5.4.1 Estimation using Low-Pass Model

* Lowpass behavioral model of PA
Complex envelope:
x(t) = A(t) cos(zq,t + qa(t))

¥(0) = f(A(®)cos(ayt + p(t) + g(4(1)))
/ /

AM-AM AM-PM

* Using measured/simulated AM-AM and AM-PM
characteristics, we can calculate

50 = f(4(®))e )
where f and g can be approximated by Taylor series.

Which means we can not really calculate this with actual
simple numbers or expressions
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Example of AM-AM and AM—PM nonlinear PA characteristics

T
Gain=29.3 4B P1 = 32.0 dBm
35| AM - AM cocffiients in power series
09845 0,6407 $1.3339 0.0997 -0.1450°0.6250
M codffitients in power series O -

2 3.7040_:3.9303 22253 0.6478 0203637
) .
g 2 B
3 | AM - AM
= 20
Z p. 336
T 15
&
= 10
g
3

L
M - PM sl

o P Ot

5 i i 1

-15 -10 -5 0 5 10

Input Power (dBm)
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Signal spectra at input and output of a PA

P ’ !
R ’,W-'o«"'w"‘« ! |
G \
1o} OBWEL2I M. OBWEL240 M ;
| et | I Vi e e
ACPR2L~-61.2 dbe 1 [ o ! |
‘ ot AT ‘
| =
o : AR SN
|
[

A i I i
24 2 A6 12 08 04 0 04 08 12 16 2 24 L
Frequency (MHz) 24 4

o
, , s | ‘ ‘ ‘ :
bl L L \\\ | i

(2) CDMA signal spectrum at the input port of the PA Frogncy (MHz)
(b) CDMA signal um at the output port of the PA.

Spectral regrowth
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Reminder about IP2 and IP3... “

2xP,,
Pnp P a3 Png Pnp
AP
(0,-0,) ) 0, (0,+w,)
PO 0w (20,-0,) (2w,-w,)
20—, 20,-0,
1Py = P, - IMy/2 1P, = P, IM,
1P| o= '\leda * Piolysm =Py~ (Ppg - P,)2 =P~ Ppp-Py)
=GP, = Ppp)2 =2P,~Ppp

Add many tones at different frequency distances => spectral regrowth!
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Adjacent and Alternate Channel Power

* 5.4.2 Calculation using multitone
* Modulated signal modeled by two tones

Bolipm = Tr-tonein = 1in +3dB
* Regrowth by IM3 considered
31, -P
in IM3
IIR = dBm
2
out - _ _ One of several approximation for ACPR,
me dBm 3(12/<W’~'" 3dB + GT«\) Z(UPJ + GTY) see others at p. 339.
out
e =3P, =348 2007
ABW
ACPR,, =P +10log=—4|_p | 4
Adj M3 g g 7 ygm 0
Correction factor from PAR,
e.g. for CDMA Co = 0.7.. 2dB,
see (5.4.12) for details.
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Adjacent and Alternate Channel Power

. 1
» Or required OIP3 can be calculated
out
orp, - ol =3P,
2
ABW,,,
Put| = ACPR,, ~10log=——A 4 P | +C,
ACPR, ABW
OIP,=P,| - 4 1 5log AC? _ 4 5dB +C, /2
~ldBm 2 BW

Example: OIP,=41dBm —-P, ;= -31dBm (OIP, - P,z >~ 9.8 dB)
freitiegdcs but Prx = 30 dBm, PAPR = 3.8 dB, BO=3 dB (e.g.) => P, = 36.7 dBm
Prx =30 dBm
ABWicp =30 kHz
BW = 1.25 MHz
Co=2dB For the alternate channel, the IM5 effect can be
PAR =3.8dB considered instead.
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Adjacent/alternate channel power

« For the alternate channel, IM5 can be considered
instead.

out ABW g,
ACPR,, = ( B3t ,, +10log e )7 i
1P = S(Pn aBm 3)- Puus dBm
5
4
oip, =) -APRu ) 5109 28Wacr _3 754p Required OIPS,
am 4 BW derived like OIP3

OIP, =30+%—4—3.75537d3m

D/A converter *

DAC with max swing = max SNR

Number of bits — SNRaq >> SNRother

Recall EVM2 = 1/SNR, and EVMmax = 10% (typically req.)
=> SNRmin =20 dB

SNRaq = SNRmin + 20dB = 40dB

SNRa =6.02N +1.76 + 10logOSR

=y SNR,=1.76-10log OSR
6.02

N =6.35-1.66log OSR More bits added to preserve pulse

shaping. Typically 9-10 bits —
linearity critical (SFDR), spurious

OSR=4..8 & N=6(5) A .
emission must be avoided
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D/A converter 5.5 Noise Emissions

» Sampling frequency — selectivity of the image reject filter
OSR =2... 8 is common

— (ool |

0. A 2f,

» TX leakage in to RX band
* Noise calculations (book)
* Spectrum mask E— o

TRANSMIT EMISSION MASK

sinwT, /2 \ ) N H W
Visew)==—== ’;2 2 Vs (0 = kag) S Spacing according ¢ Mv“ M
(0} . .
s "™ to interpolation re L
Pl ity
. istorti i introdu i -
Predistortion 1/sinc can be introduced to compensate for DAC sinc

shaping. wlan 802.11g R = .
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Spectrum mask o w, S sy s
- LTE UE (rel 10) .

Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

Spectrum emission limit (dBm)/ Channel bandwidth
Bfoos 14 3.0 5 10 5 20 | Measurement
(MHz) | MHz | MHz | MHz | MHz | MHz | MHz | bandwidth
£0-1 10 A Kl B 20 21 30 kHz
£125 | -10 B E E E E MHz
2528 | 25 gl E - E E MHz
£285 - - - E E MHz
456 25 - - - E MHz
+6-10 25 - - E MHz
£10-15 25 - MHz
+15-20 25 13 1 MHz
+20-25 25 1 MHz
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Noise Emissions
« LTE UE

Pmax: 23dBm
BW: 10MHz
50 RBs

Block C (UK)
@857MHz
16QAM

Power Level (dBm)

o === LTE emission mask
Bz 852 862 872
Frequency (MHz)

Saurce: Ofcom (August2012)
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Spectrum mask
- LTE UE (rel 10)

——  eun —

Table 6.6.3.1-2: Spurious emissions limits
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5.6 System design considerations
» As for the RX: Good electrical performance, lower power
consumption, low cost, small size.
» 2/3 of current consumption in the total TRX.
+ 3/4 of TRX power in the TX.
=> minimizing power especially important in the TX.

Frequency Range Maximum Level | Measurement Bandwidth » As for the RX: Trade-off between a lot of parameters,
O Kz <T<150 Kilz 36 dBm Tkiz e.g. higher linearity costs more current.
150 kHz < f < 30 MHz -36 dBm 10 kHz * As for the RX: Minimum requirements set by standards,
30 M}.{lf f < 1000 MHz gg gim ll"idksz with certain margins, typ. 3 dB at RT and 1.5 dB at max
1 GHz < f<12.75 GHz -30 dBm z temp, frequency, voltage.
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5.6.1 Architecture selection

« Direct conversion: Usually no IF channel filter
used, so less advantage. Less spurious emission
(no IF). More current since gain is rather in the
RF.

» Today, power consumption/efficiency is very

5.6.2 TX power and gain

to Rx Most of gain at RF

Dup or
’ Switch
LPF
i / 4 < 4 f Berd “
/ Filter 'Y
/ VGA )—{ LPF |« DAC

important (battery life for portable units, energy Loss-2s08 PA — SAW Driver \
efficiency and heat removal for fixed units). ; VGA) ‘ ‘

« A number of "new” architectures and PA Vginwtgg Loss ~35d8  } Loss 0,508 Amplude o swing signa
operation to improve efficiency: Polar modulation / ' \ | must not overdrive
(Envelope Tracking, ET), Outphasing, Doherty, - A cain e

P ain ~ ain \
Dlgltal PA (DPA)a PWM. can be controlled <10dB ‘. <10dB
Gain control can be continuous
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5.6.2 TX power and gain
+ Output power in different standards:

* GSM, WCDMA, (LTE): at antenna port (ARP)

+ other older systems (e.g. CDMA): effective
radiated power (ERP) =
(power supplied to antenna) * (antenna gain
relative to a half-wave dipole in a given direction),
gain = 2.15 dBi
ERP[dB] = TXpwr_ant + Gant - 2.15

« or effective isotropic radiated power (EIRP) =
(power supplied to antenna) * (antenna gain
relative to a isotropic antenna), gain = 0 dBi
EIRP[dB] = TXpwr_ant + Gant

» Usually ARP is used.
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TX power and gain

+ Example: Parp = 30 dBm

Duplexer PA SAW Driver VGA Balun 1Q_Mixer

powercan | -25 | 28 | 35 | 8 | | 1 | 743 |
Power | 30 ‘32.5 ‘ 45 ‘ 8 ‘ 0 ‘ ‘P,W
| <
- Power at mixer input, 500 Q input
resistance assumed : <100mv,, @
mixer input
v 2y 2 ,
mms( Ak 02 =0.25x10"mW
' 2R, 2-500
i gy, S —26dBM
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Performance may vary with minor details in the TX chain
Table 5.2. A performance comparison of two different distribution transmitter chains

1566 | 2210 | o1 | sozr | sor | mv | wrer | 3
Y7 | TS0 0708 | 10 | e | asT | s | A7)

)
oise in Rx band (dBmHz)

[ | 1T T
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5.6.3 TXAGC

* GSM terminal: commands from base station, 2 dB gain/
power steps over 30 dB.

» CDMA: very fine steps of 0.25 - 1 dB.

38

Table 5.3. Maxi and power for mobile stations
Nominal Nominal
Maximum | Minimum | Dynamic Power
Power Power Power Range Control
Systems Class (dBm) (dBm) (dB) Method
AMPS 11 28 8 220 | BScommends
CDMA 800 ur 23 -50 273 Open and
closed loops |
CDMA 1900 m 23 -50 273 Open and
closed loops
GSM 900 v 33 S >28 | BScommands
DCS 1800 1 30 0 >30 | BScommands
TDMA 1T 28 8 >20 | BS commands
WCDMA v 21 -50 271 Open and
closed loops
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