TSKS01 Digital Communication Lecture 11

Convolutional codes, CRC codes

Emil Björnson

Department of Electrical Engineering (ISY) Division of Communication Systems

LINKÖPING UNIVERSITY

Outline of the Lecture

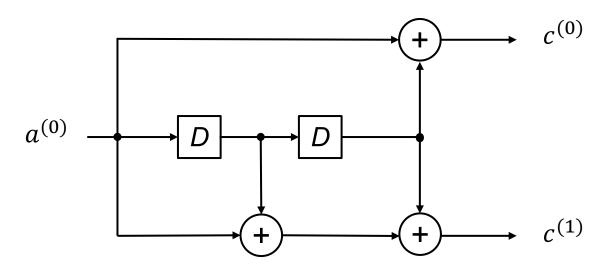
- Convolutional codes
 - Trellis representation and Viterbi
- CRC codes
 - Introduction
 - Error detection

Generating a Convolutional Code

- Dimensions:
 - k inputs to encoder
 - n outputs from encoder \int

Coding rate:
$$R = \frac{k}{n}$$

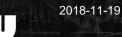
- Generator matrix G(D)
 - Dimension *k x n*
- Generating codewords
 - Input: $A(D) = a_0 + a_1 D + a_2 D^2 + \cdots$
 - Output: C(D) = A(D)G(D)



• Generator matrix:

$$G(D) = (1 + D^2, 1 + D + D^2)$$

• Obtained since impulse A(D) = 1 gives output $C^{(0)}(D) = 1 + D^2$ and $C^{(1)}(D) = 1 + D + D^2$



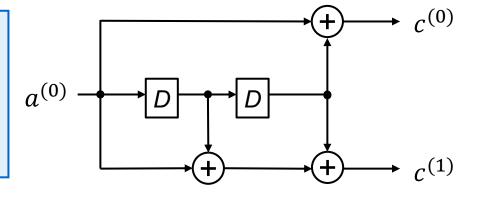
State Transition Diagram

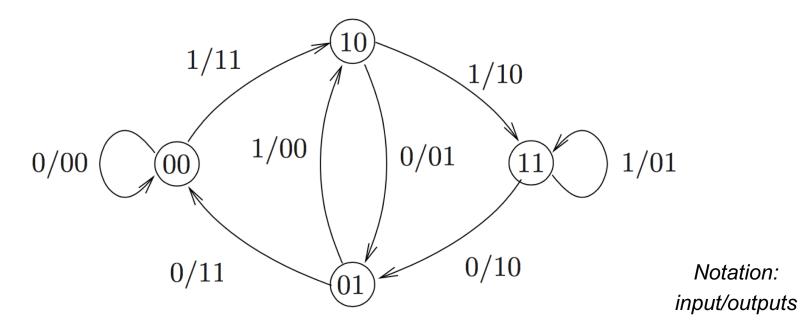
Shows

- Number of states: 2^{nbr of delay elements}
- Possible state transitions

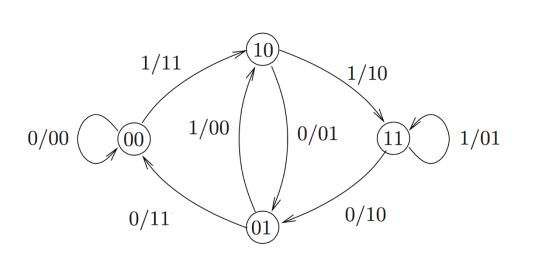
2018-11-19

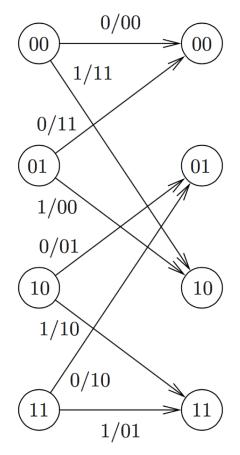
Corresponding input and output





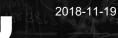
Trellis Representation (1/2)





State transition diagram

Section of a trellis



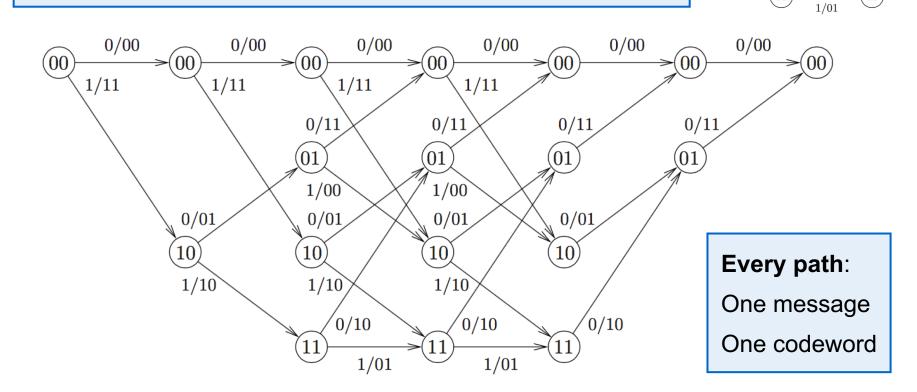
TSKS01 Digital Communication - Lecture 11

Сомм Sүs

Trellis Representation (2/2)

Suppose

- We begin in 00
- We add two extra zeros at end of message to end in 00



0/00

(01)

10

11

OMM

1/11

00

(01)

0/11

1/00

0/0110

1/10

11

0/10

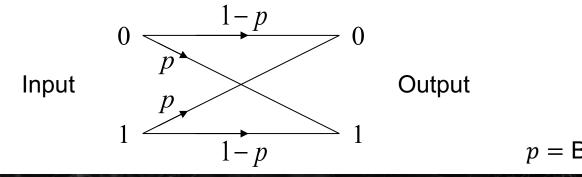
2018-11-19

Decoding of a Convolutional Code

Decoding: Obtain \hat{a} from a received bit sequence that contains errors

Approach:

- Use trellis representation and apply Viterbi algorithm
- Begin in state 00 and end in state 00
- If binary symmetric channel with $p \le 0.5$: Choose the path with fewest bit errors (smallest Hamming distance)

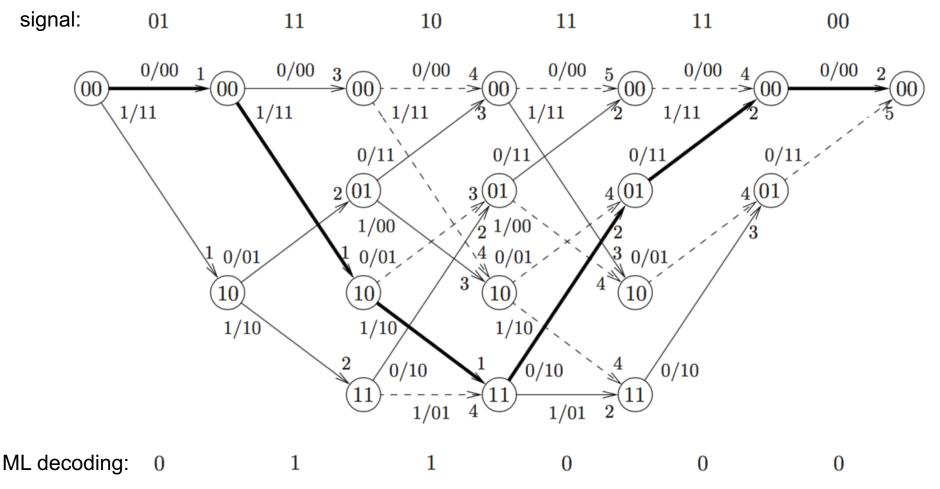


p = Bit error probability

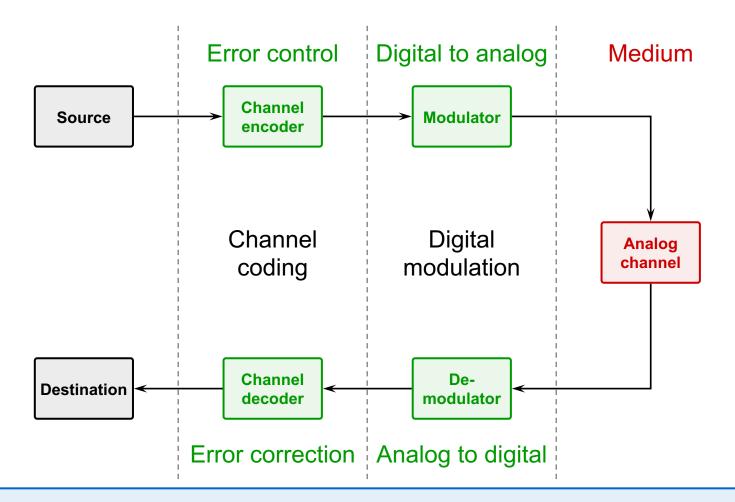
Example: Viterbi for Convolutional Code

Received

2018-11-19



Detection of Errors



What if we detect an error, but cannot correct it?

TSKS01 Digital Communication - Lecture 11

10

ARQ: Automatic Repeat reQuest

Simple packet structure

- Header: Describes the content and destination
- Parity bits: Detect packet errors

Information symbols

Header

Parity bits

If the packet has (uncorrectable) errors: Request retransmission

Cyclic Redundancy Check (CRC) codes

Commonly used in digital communications to detect errors

- Redundancy: Add parity bits
- Check: **Detect** it there are any errors

Can in principle be used for error correction, but normally not

Based on division of binary polynomials

Integer and Polynomial Division

Integer division
Ex:
$$\frac{1732}{15} = 115 + \frac{7}{15}$$

 $\frac{115}{15} = 0$ uotient
 $\frac{15}{15} = 15$
 $\frac{15}{15} = 0$
 $\frac{-15}{23}$
 $\frac{-15}{82}$
 $\frac{-75}{7}$ Remainder

2018-11-19

$$\frac{Polynomial \ division \ (binary polynomials)}{Ex: \frac{x^5 + x^3 + x + 1}{x^2 + x + 1}} = x^3 + x^2 + x + \frac{1}{x^2 + x + 1}$$

$$\frac{1 \cdot x^3 + 1 \cdot x^2 + 1 \cdot x + 0 \cdot 1}{x^2 + x + 1}$$

$$\frac{1 \cdot x^3 + 1 \cdot x^2 + 1 \cdot x + 0 \cdot 1}{1 \cdot x^5 + 0 \cdot x^4 + 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 1 \cdot 1}$$

$$\frac{1 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2}{1 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2}$$

$$\frac{1 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2}{1 \cdot x^4 + 1 \cdot x^3 + 1 \cdot x^2}$$
With bits only:
$$\frac{1 \cdot x^5 + 1 \cdot x^2 + 1 \cdot x}{1 \cdot x^3 + 1 \cdot x^2 + 1 \cdot x}$$

$$\frac{1 \cdot 1 \cdot 0}{1 \cdot 1 + 1}$$

$$\frac{1 \cdot 1 \cdot 0}{0 \cdot x^2 + 0 \cdot x + 0 \cdot 1}$$

$$\frac{1 \cdot 1 \cdot 1}{1 \cdot 1 + 1}$$

$$\frac{1 \cdot 1 \cdot 1}{0 \cdot 1 + 1}$$

TSKS01 Digital Communication - Lecture 11

Division Algorithms

Division Algorithm for Integers (2000 years old wisdom) :

Given integers *a* and *b*, $b \neq 0$. Then there exist unique integers *q* and *r*, $0 \leq r < |b|$, such that a = qb + r holds.

Division Algorithm for Binary Polynomials (slightly newer wisdom):

Given binary polynomials a(x) and b(x), $b(x) \neq 0$. Then there exist unique binary polynomials q(x) and r(x), $deg\{r(x)\} < deg\{b(x)\}$, such that a(x) = q(x)b(x) + r(x) holds.

CRC Code Generation

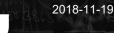
- Input
 - m(x): Message of length k, as polynomial with degree up to k-1
 - p(x): CRC polynomial of degree n k
- Generation
 - Compute remainder r(x):

$$x^{n-k}m(x) = q(x)p(x) + r(x)$$

• Create codeword:

$$c(x) = x^{n-k}m(x) + r(x)$$

Result: c(x) = q(x)p(x) with zero remainder



Interpreting CRC Code as Block Code

Codeword

$$c(x) = x^{n-k}m(x) + r(x)$$

$$m(x)$$
 $r(x)$

- The factor x^{n-k} makes sure that all terms in $x^{n-k}m(x)$ have a higher degree than r(x)
- Example: $c(x) = x^5 + x^4 + x$
 - Write as binary sequence 110010
 - Send on bit at a time over the channel

CRC Error Detection

Received signal:

$$y(x) = c(x) + w(x)$$

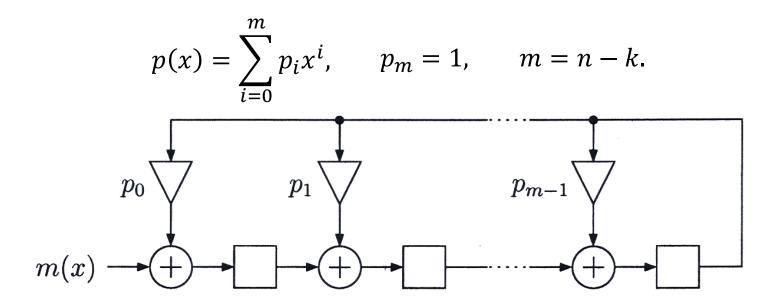
- Polynomial with errors: w(x)
- No errors: w(x) = 0

Detect error: y(x) has a non-zero remainder when divided by p(x)

- Design CRC polynomial p(x) to make it unlikely that it divides w(x)
- For each choice we can compute how many errors it can detect
- Some examples are given in the book

2018-11-19

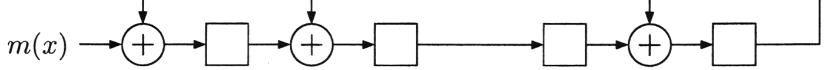
Shift Register Implementation



Example:

2018-11-19

 $p(x): 1 + 1 \cdot x + 0 \cdot x^2 + 1 \cdot x^3 + 1 \cdot x^4$



LINKÖPING UNIVERSITY

www.liu.se