Modern Physics, TNE041

Exam, 5 June 2024, Answers and short solutions

1. (a) True, False, False, True.
(b) Work function from $K_{\max }=h c / \lambda-\phi=$ and $K_{\max }=0 \mathrm{eV}$ when $\lambda=230 \mathrm{~nm}$, yields $\phi=5,39$ eV . When $\lambda=180 \mathrm{~nm}$ one obtains $K_{\text {max }}=1,5 \mathrm{eV}$.
2. (a) The wave function is known $\psi(x)=\sqrt{2 / a} \sin (n \pi x / a)$. The probability $\operatorname{Pr}(b \leq x \leq b+\Delta x)=$ $\int_{b}^{b+\Delta x}|\psi(x)|^{2} d x=(\Delta x) / a-(2 n \pi)^{-1}[\sin (2 n \pi(b+\Delta x) / a)-\sin (2 n \pi b / a)]$. (b) When $n \rightarrow \infty$ one obtains $\operatorname{Pr}(b \leq x \leq b+\Delta x) \rightarrow(\Delta x) / a$, which is what to be expected if the electron had been a classical ball. This is an example of the correspondence principle, which is described in Harris.
3. (a) Let the wave function in empty space be $e^{i k_{1} x}+A e^{-i k_{1} x}$ and in the metal $B e^{i k_{2} x}$. From the Schrödinger equation one has $k_{1}=\sqrt{2 m E} / \hbar$ and $k_{1}=\sqrt{2 m\left(E+E_{N a}\right)} / \hbar$, with $E=0,1 \mathrm{eV}$ and $E_{N a}=5,0 \mathrm{eV}$. Continuity at $x=0$ for ψ and its first derivative yields the equations $1+A=B$ and $k_{1}-A k_{1}=B k_{2}$ from which we get $R=|A|^{2}=\left[\left(k_{2}-k_{1}\right) /\left(k_{2}+k_{1}\right)\right]^{2}=\left[\left(\sqrt{E+E_{N a}}-\right.\right.$ $\left.\sqrt{E}) /\left(\sqrt{E+E_{N a}}+\sqrt{E}\right)\right]^{2}=0,57$. (b) Classically, nothing reflects when it hits a drop, so $R=0$.
4. (a) The m_{s} takes one of the values $-s,-s+1, \cdots, s-1, s$, that is, in this case one of the values $-3 / 2,-1 / 2,1 / 2,3 / 2$. (b) The length of \mathbf{S} is $|\mathbf{S}|=\sqrt{s(s+1)} \hbar=\sqrt{15} \hbar / 2$. Its z-component is $S_{z}=m_{s} \hbar$. Least angle corresponds to largest value of m_{s} which is when $\left.m_{s}=s=3 / 2\right)$. One obtains $\arccos \left(S_{z} /|\mathbf{S}|\right)=39^{\circ}$.
5. (a) Here $N(E)$ is the probability that the state with energy E is populated while $D(E)$ is the number of states per energy at the same energy E. The expression $\int_{E_{1}}^{E_{2}} N(E) D(E) d E$ is just the number of particles with an energy between E_{1} and E_{2}. (b) The probability searched for is given by the ratio $\int_{0,9 E_{F}}^{\infty} N(E) D(E) d E / \int_{0}^{\infty} N(E) D(E) d E$, where the denominator is just the total number of particles in the system. Since it is electrons we consider, Fermi-Dirac statistics apply. Room temperature implies the approximation of $N(E)$ with a step function, the Free-electron-model tells us $D(E)=$ const. $\cdot \sqrt{E}$. The ratio becomes $\int_{0,9 E_{F}}^{E_{F}} \sqrt{E} d E / \int_{0}^{E_{F}} \sqrt{E} d E=1-0,9^{3 / 2}=0,146$.
6. The energy levels of a "hydrogen atom" is (PH F6.4) $E_{n}=-m e^{4} Z^{2} /\left(8 \varepsilon_{0}^{2} h^{2} n^{2}\right)$. For the Se-atom here $Z=1$ but one has to replace the permittivity ε_{0} by $\varepsilon_{0} \varepsilon_{r}$ where the relative permittivity $\varepsilon_{r}=13,5$. The energy to free a donor electron from the Se-atom is then the same to excite it from $n=1$ to " $n=\infty$ ", i.e., $\Delta E=E_{\infty}-E_{1}=0-(-13,6) / 13,5^{2} \mathrm{eV}=0,075 \mathrm{eV}$. This is orders of magnitude less than the band gap $1,4 \mathrm{eV}$, and the the electrons from the donor atoms can be considered as free.
