Modern Physics, TNE046

Exam, 8 June 2023, Answers and short solutions

1. (a) False, energy is always conserved (but in QM sometimes uncertain for short time-intervals). False, with $s=1$ the electron would be a boson, not following the Pauli principle.
True, see Harris.
False, doping is mainly performed to increase the number of charge carriers.
(b) The kinetic energy is given by $K=\gamma_{u} m c^{2}-m c^{2}$, which gives the energy neccessary for the requested increase in speed to be $\Delta K=\left(\left(\gamma_{0,9 c}-\gamma_{0,6 c}\right) m c^{2}=8,187 \cdot 10^{-14} \mathrm{~J}\right.$, gives us $V=511$ keV.
2. The maximum amount of energy will be imparted to the electron in the case where the photon loses the maximum amount, that is, when the wavelength difference $\Delta \lambda=\lambda_{C}(1-\cos \theta)$ is as greatest. This happens trivially when $\theta=\pi$, i.e., the photon changes direction totally. The energy it loses is 85 keV , so $h c / \lambda-h c / \lambda^{\prime}=85 \mathrm{keV}$, which gives $\lambda^{-1}-\lambda^{\prime-1}=6,855 \cdot 10^{10} \mathrm{~m}^{-1}$. This combined with $\Delta \lambda=\lambda^{\prime}-\lambda=4,85 \cdot 10^{-12} \mathrm{~m}$ results in $\lambda=0,00659 \mathrm{~nm}$ (a quadratic equation has to be solved along the way).
3. Make the ansatz $\Psi(x, t)=\psi(x) \phi(t)$ and insert into the time-dependent equation, see Harris section 5.2. The temporal part becomes $d \phi / d t=(-i E / \hbar) \phi$ (here E as the separation constant) which has the solution $\phi(t)=a e^{-i(E / \hbar) t}$, with a as an arbitrary constant of integration. Notice there is a misprint in Harris Eq. (5-6), a minus-sign is omitted.
4. The easiest solution is to translate the x-values through $x^{\prime}=x+a / 2$ and thereafter just do as "normal" for the infinite well between 0 and L. If one insists on keeping the original values, one has to use the boundary conditions $\psi(-a / 2)=\psi(a / 2)=0$. This gives two sets of solutions; $\psi_{n}(x)=A \sin [(2 n) \pi x / a], n=1,2, \cdots$, and $\psi_{n}(x)=B \cos [(2 n+1) \pi x / a], n=0,1,2, \cdots$, both with the same value of the normalization constant $A=B=\sqrt{2 / a}$ for all n. Merging of the two sets

$$
\psi_{n}(x)=\left\{\begin{array}{cl}
\sqrt{2 / a} \sin (n \pi x / a) & n \geq 2 \text { even } \\
\sqrt{2 / a} \cos (n \pi x / a) & n \geq 1 \text { odd }
\end{array} \quad E_{n}=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right.
$$

5. The spin is irrelevant for the spatial distribution, the wave function is $\psi_{1,0,0}(r, \theta, \varphi)=R_{1,0}(r) Y_{0,0}(\theta, \varphi)$. The probability is obtained as

$$
\int_{0}^{a_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi}|R(r)|^{2}\left|Y_{0,0}(\theta, \varphi)\right|^{2} r^{2} \sin \theta d \varphi d \theta d r=\int_{0}^{a_{0}}\left|\frac{2}{a_{0}^{3 / 2}} e^{-r / a_{0}}\right|^{2} r^{2} d r=1-5 e^{-2} \approx 0,323
$$

6. The average energy is given by

$$
\bar{E}=\frac{\int_{0}^{\infty} E N(E) D(E) d E}{\int_{0}^{\infty} N(E) D(E) d E}
$$

where $N(E)$ is the mean occupation number, here for FD-statistics for low temperatures, which simplifies to $N(E)=1$ for $E<E_{F}$ and $N(E)=0$ for $E>E_{F}$. The quantity $D(E)$ is the density of states for an electron gas, in three dimensions proportional to \sqrt{E}. Together the expression above simplifies to

$$
\bar{E}=\frac{\int_{0}^{E_{F}} E \sqrt{E} d E}{\int_{0}^{E_{F}} \sqrt{E} d E}=\frac{3}{5} E_{F}
$$

where E_{F} is the Fermi energy.

