TSEK02: Radio Electronics Lecture 1a: Course Introduction

Ted Johansson, EKS, ISY

Objectives (from Studieinfo)

 The course gives the student basic knowledge in <u>radio electronics</u>. The <u>system perspective</u> is addressed both in the context of <u>traditional radio</u> and <u>today's wireless communication systems</u>.

The objectives of the course is that the student will learn <u>operation</u> <u>principles</u> of radio systems and their fundamental <u>limitations</u>.

After the course the students should be able to:

- explain the principles of radio transmission and reception
- explain the existing physical and technical <u>limitations</u> of a radio system
- analyze the <u>functionality</u> of radio transmitters and receivers
- calculate basic radio <u>specifications</u> in terms of power, gain, noise and frequency for basic modulation schemes
- explain <u>differences</u> between traditional radio and today's digital radio systems

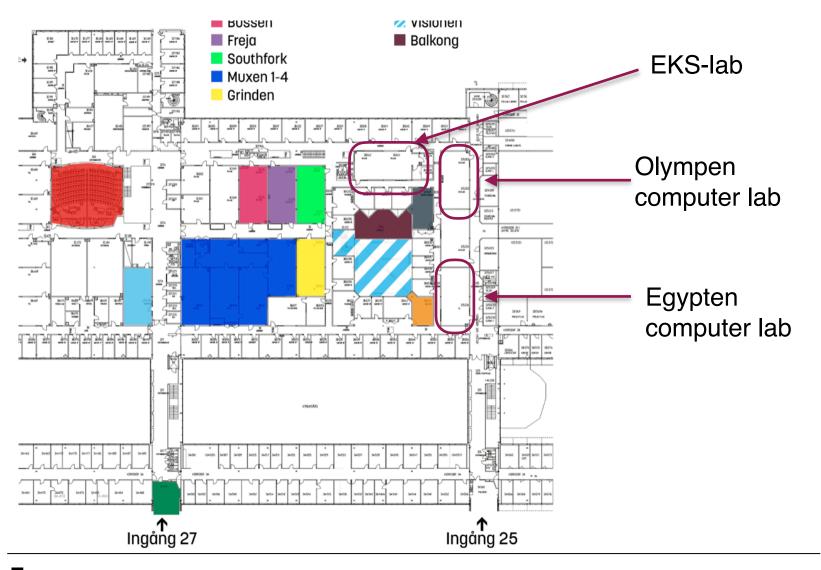
Objectives (short version)

 You will acquire basic knowledge in radio electronics on a system level (no transistors!).

 You will be able to read and understand specifications of a modern wireless system and design the corresponding radio on a block diagram level.

Course Outline

- Lectures: 8 x 2h
- Tutorials: 5 x 2h
- Labs: 2 x 4h
 Simulation lab (OLYM/EGYP)
 - 2. Measurement lab (EKS-lab)
 - Sign-up is required for both labs
- Exam preparation: 1 x 2h
- Examination: Written exam at the end of the course.


Labs

- Lab 1 (Egypten/Olympen), MATLAB simulations:
 - half of the group (max ?) Nov 26, 17-21.
 - half of the group (max ?) Nov 27, 17-21.
- Preliminary

- Lab 2 (EKS-lab 3D:542), measurements:
 - 6 students/group, Dec 3, 4, 10, 11, 17, 18. (we probably only need 4 times). Preliminary

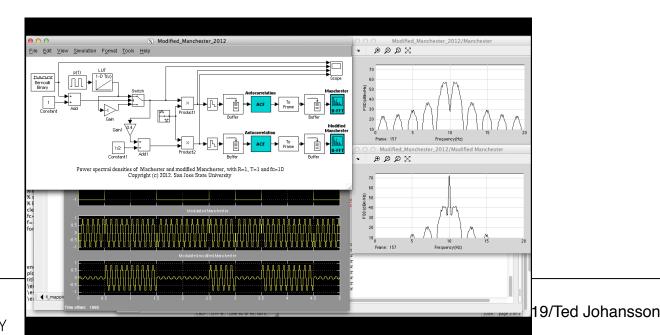
B-house, upper floor

Lectures (8)

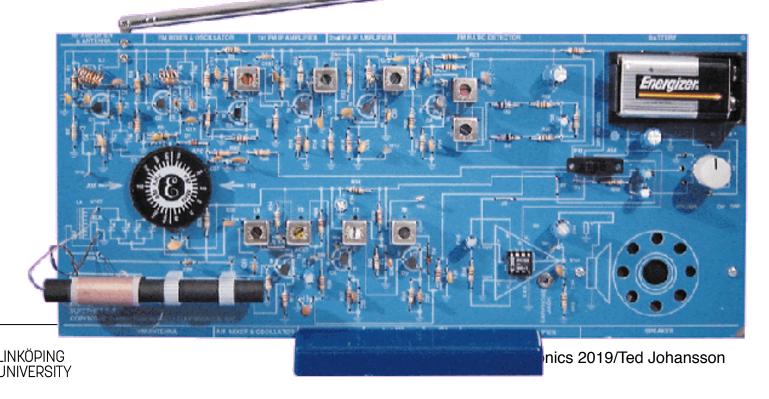
 Theoretical concepts, fundamental and practical limitations, design techniques.

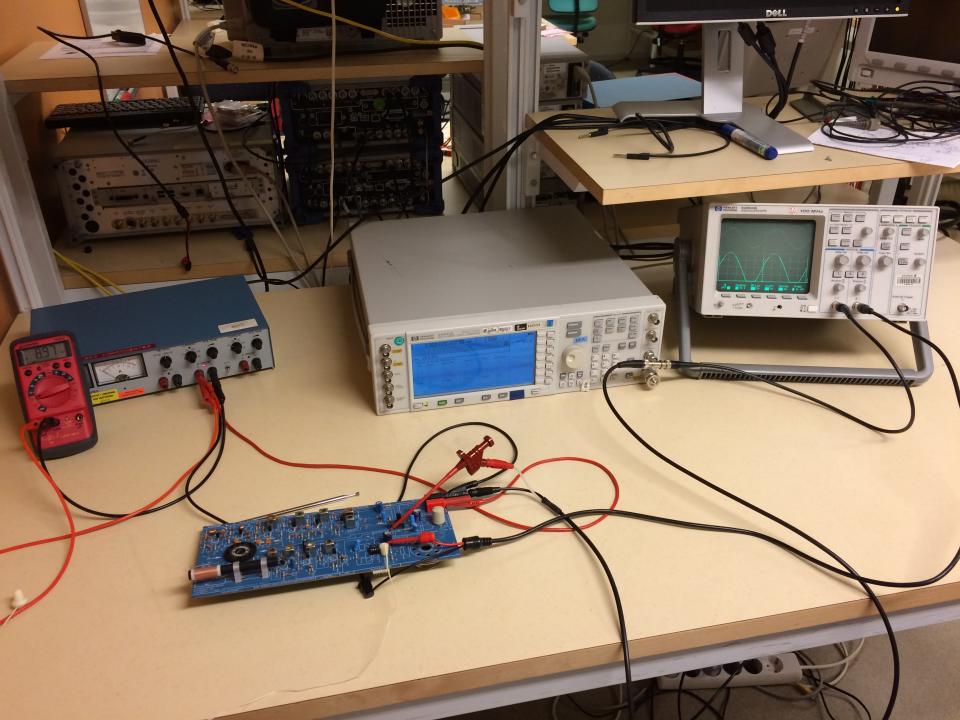
 A logical and homogenous approach to radio design is applied: from baseband, the modulator to transmitter, channel, the receiver, demodulator, and baseband again.

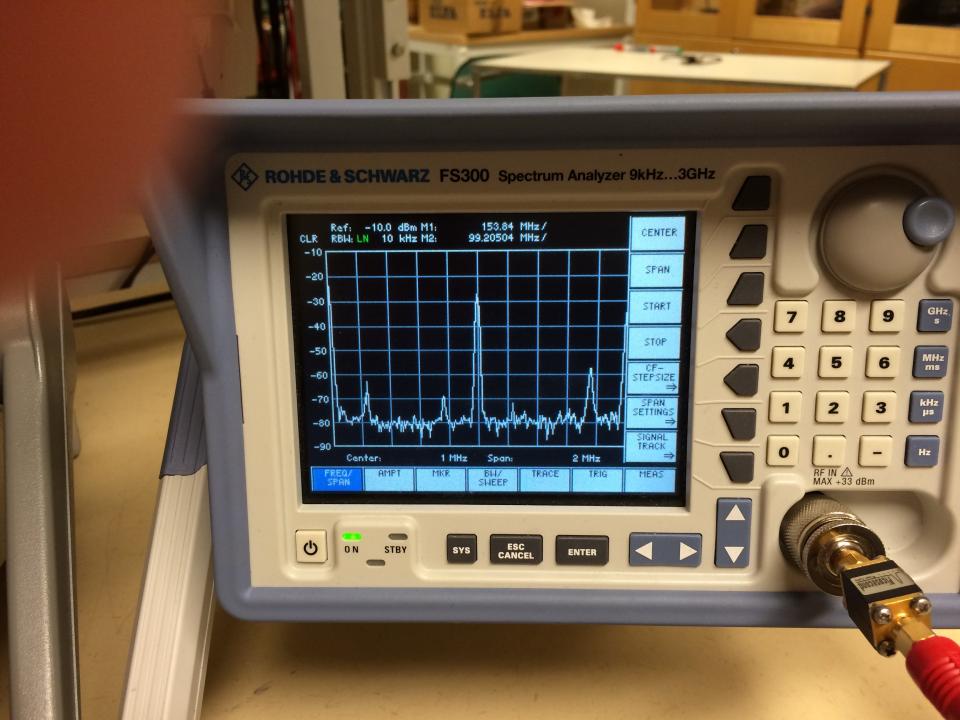
Tutorials (5)


- After each topic you will practice the new knowledge by solving selected problem to complement to the lectures.
- The answer to these questions will be given so that you can verify your solution.
- Some of the problems will be selected and solved on the board in tutorial sessions.
- You are always welcome to ask if you need more explanation on these problems.
- Last tutorial will be a preparation for the exam.

Lab 1: System simulations lab

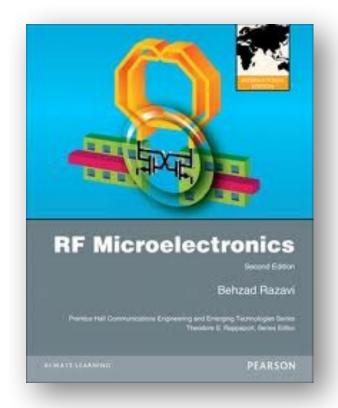



- You will design and simulate a digital transceiver in Simulink.
- Here you will see many of the concepts which have been covered in the lectures and tutorials.



Lab 2: System measurements lab

- You will go to the lab and measure a radio receiver in practice.
- Here you will experiment with the things you learned in the course.

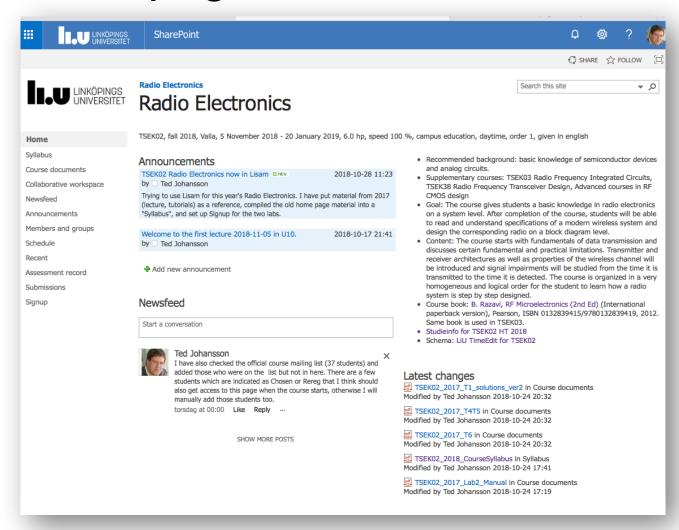

Examination

 After having learnt, practiced, simulated, and designed, you will know the radio system pretty well!

- However, in order to pass the course:
 - Attend the two labs (2 HP),
 - Pass the written exam (4 HP).
 - Exam date: Jan 18, 2020, 14-18.

Course material

B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, 2012 (paper back int. version). Lectures notes, tutorial material, and lab notes will be available at the course page in **Lisam**


There are also several other books on Radio Electronics, as well as material on internet.

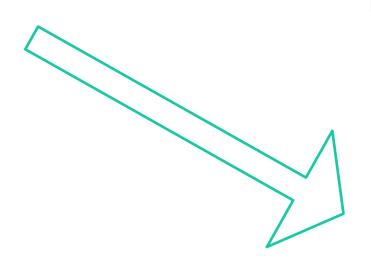
The book is also used in the TSEK03 RFIC course

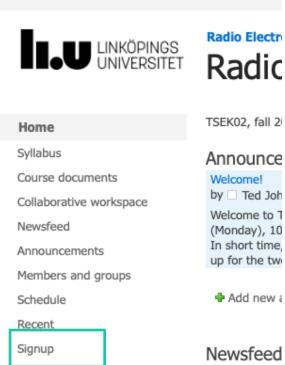
Lisam Course pages

lisam.liu.se

Schedule

Link to TimeEdit on the Lisam course start page


	Tid	Kurs	Lokal	Undervisningstyp	Lärare	Studentgrupp	Information till student
	Fr 2019-11-22	!					
	15:15 - 17:00	TSEK02	S25	Lektion	Oscar Andres Morales Chacon	ELE1 SY2	Tu 4
v 48	Ti 2019-11-26						
	17:15 - 21:00	TSEK02	OLYM	Datalaboration	Oscar Andres Morales Chacon Ted Johansson	ELE1 SY2	Lab Simulink, group 1, 20 students, signup required.
	On 2019-11-2	7					
	17:15 - 21:00	TSEK02	EGYP	Datalaboration	Oscar Andres Morales Chacon Ted Johansson	ELE1 SY2	Lab Simulink, group 2, 20 students, signup required.
v 49	Ti 2019-12-03						
	13:15 - 17:00	TSEK02		Laboration	Oscar Andres Morales Chacon	ELE1 SY2	Lab Radio receiver measurements, group 1 (6 students), signup required. Room: EKS-lab 3D:542.
	On 2019-12-0	04					
	17:15 - 21:00	TSEK02		Laboration	Oscar Andres Morales Chacon	ELE1 SY2	Lab Radio receiver measurements, group 2 (6 students), signup required. Room: EKS-lab 3D:542.
	To 2019-12-0	5					
	08:15 - 10:00	TSEK02	S25	Lektion	Oscar Andres Morales Chacon	ELE1 SY2	Tu 5
	Ti 2019-12-10						
	13:15 - 17:00	TSEK02		Laboration	Oscar Andres Morales Chacon	ELE1 SY2	Lab Radio receiver measurements, group 3 (6 students), signup required. Room: EKS-lab 3D:542.
	On 2019-12-11						
	17:15 - 21:00	TSEK02		Laboration	Oscar Andres Morales Chacon	ELE1 SY2	Lab Radio receiver measurements, group 4 (6 students), signup required. Room: EKS-lab 3D:542.
	To 2019-12-12	2					
	08:15 - 10:00	TSEK02	S25	Lektion	Oscar Andres Morales Chacon	ELE1 SY2	Tu 6



Start a conver

Lab Signup (required for both labs)

 In Lisam, go to Signup on first course page



Assessment record

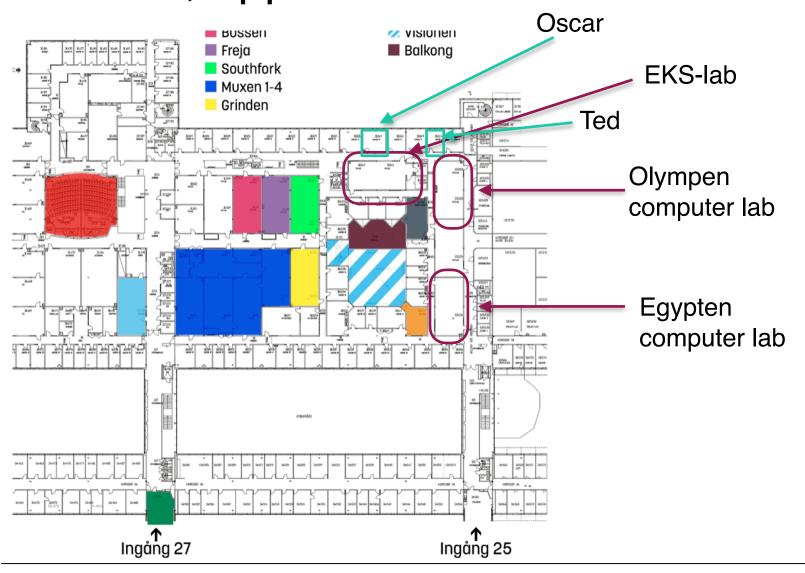
Lab Signup (required for both labs)

Problems accessing the course pages in Lisam?

Mail me! (<u>ted.johansson@liu.se</u>)

Staff

- Ted Johansson
- Docent, Adjunct Professor
- Integrated Circuits and Systems (EKS), ISY
- ted.johansson@liu.se,
- https://liu.se/medarbetare/tedjo76
- Lectures, lab 1, examiner.


Staff

- Oscar Morales
- Ph.D. student
- Integrated Circuits and Systems (EKS), ISY
- oscar.morales@liu.se
- Tutorials, labs.

B-house, upper floor

Ted Johansson: CV in short

- 1985: M.Sc. (Y, LiU + RWTH, Germany)
- 1985-1989: Institute of Microelectronics, Kista
- 1989-2002: Ericsson Microelectronics, Kista
- 1992-1998: Industrial PhD (LiU)
- 2002-2007: Infineon Technologies, Kista
- 2008-2011: Huawei R&D Center, Kista
- Own company/consulting 2008-
- Adjunct professor (external, part-time): 2009-Docent 2015

Research on PA design in CMOS

PhD supervision

2015-/VT1: undergraduate course TSEK03

2015-/HT2: undergraduate course TSEK02

2017-/HT1: undergraduate course TSEK38

2019-/VT1: Bachelor thesis course TSIU09

Lectures overview

Lecture	Content	Book chapters
1	Course introduction Basic definitions	not in the book 1, 2.1.1
2	Modulation Techniques	3.1 - 3.3.1
3	Modulation Techniques	3.3.2 - 3.3.6
4	Multiple Access Techniques TX Architectures	3.6 4.3
5	Nonlinearity Issues	2.1.2-3, 2.2.1-2, 2.2.4-5
6	Channel and antenna Noise	not in the book 2.3
7	Noise Receiver Architectures	2.3.5 4.1, 4.2.1, 4.2.3
8	RX Nonlinearity Issues Demodulation	2.2, 2.4 not in the book

Courses in Radio Electronic Design

TSEK02: Radio Electronics

HT2 4th year
Intro to radio transmissions
TX, link (antennas), RX
No circuit level details
No system calculations
MATLAB/Simulink

System level

Introduction/Advanced level

TSEK38: Radio Frequency Transceiver Design

VT1 4th year No circuit level details Many system calculations Transceiver design using ADS

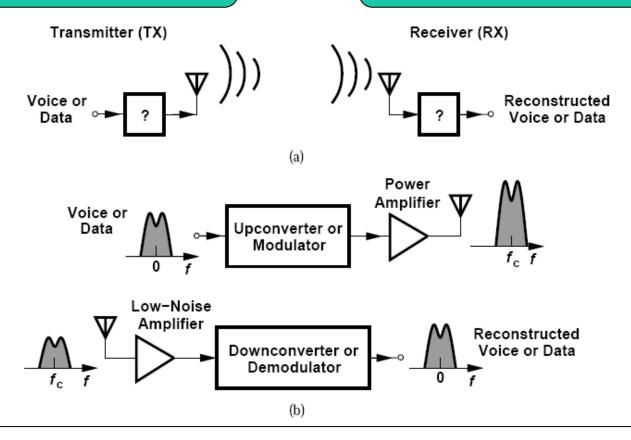
TSEK03: Radio Frequency Circuit Design

HT1 5th year Intro to radio block design, circuit level Noise, LNA, Mixer, Oscillator, PLL, PA Cadence

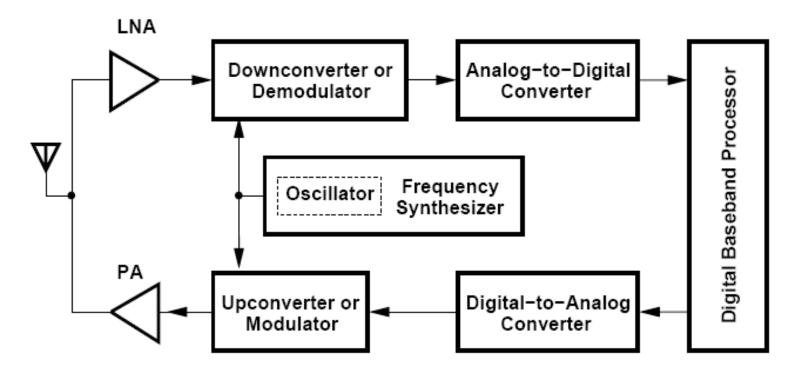
Radio

- Radio is the technology of signaling and communicating using radio waves.
- Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz).
- They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna.
- Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications.
- In radio communication, ... radio waves are used to carry information across space from a transmitter to a receiver, by **modulating** the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter.

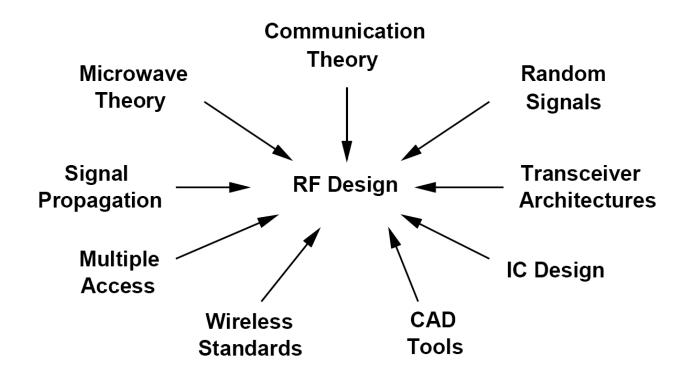
Radio


- Radio waves were first identified and studied by German physicist Heinrich Hertz in 1886.
- The first practical radio transmitters and receivers were developed around 1895-96 by Italian Guglielmo Marconi, and radio began to be used commercially around 1900.
- To prevent interference between users, the emission of radio waves is strictly regulated by law.
- https://en.wikipedia.org/wiki/Radio

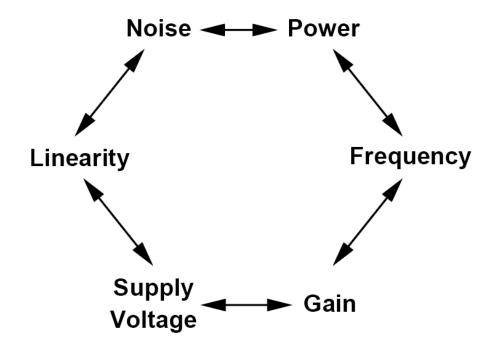
The Big Picture: RF Communication


TX: Drive antenna with high power level

RX: Sense small signal (amplify with low noise)



The Big Picture: Generic RF Transceiver



RF design challenges: multi-discipline

RF design challenges: Trade-offs

www.liu.se

