TSKS01 Digital Communication Lecture 6

Detection: Bits and pieces for AWGN channels and Dispersive channels

Emil Björnson

Department of Electrical Engineering (ISY) Division of Communication Systems

What remains: Bits and pieces

- More bounds and approximations of P_e
- Cost of non-optimal detection
- Detection of individual bits

Recall: ML Detection Bounds

ML Decision rule: Set $\hat{a} = a_i$ if $d(\bar{x}, \bar{s}_k)$ is minimized for k = i. Decision region: All points closest to a signal.

Error probability:

$$P_{e} = \frac{1}{M} \sum_{i=0}^{M-1} \Pr\left\{\overline{X} \notin B_{i} \mid A = a_{i}\right\}$$

Union bound:

Over-estimation!

$$P_{\rm e} \leq \frac{1}{M} \sum_{i=0}^{M-1} \sum_{j \neq i} Q\left(\frac{d_{i,j}}{\sqrt{2N_0}}\right)$$

Nearest neighbour approximation:

$$P_{\rm e} \approx \frac{1}{M} \sum_{i=0}^{M-1} n_i Q\left(\frac{d_{\rm min}}{\sqrt{2N_0}}\right)$$

Average # nearest neighbors

TSKS01 Digital Communication - Lecture 6

Example: Error Probability

Alternative Union Bound

Many points with small *N*:

Some regions have no common border!

Set of "real" neighbours:

 $I_j = \{i: i \neq j \text{ and } B_i, B_j \text{ have a common border}\}$

Improved union bound:

$$P_e \leq \frac{1}{M} \sum_{j=0}^{M-1} \sum_{i \in I_j} Q\left(\frac{d_{ji}}{\sqrt{2N_0}}\right)$$

2018-10-08

Alternative Nearest Neighbour Approximation

Order distances between points:

 $d_1 < d_2 < d_3 < \cdots$

Count neighbours at different distances:

 $n_{ij} = \#$ of neighbours at distance d_j from \bar{s}_i

NN approximation with m distances:

$$P_e \approx \sum_{j=1}^m Q\left(\frac{d_j}{\sqrt{2N_0}}\right) \frac{1}{M} \sum_{i=0}^{M-1} n_{ij}$$

 $d_1 = A, \qquad d_2 = \sqrt{2}A, \qquad d_3 = 2A$

Example: Received Signals

SNR: $E_{avg}/N_0 = 7.5$

SNR: $E_{\rm avg}/N_0 = 0.75$

Example: Alternative Union Bound

Simple but crude expressions (1/2)

• Rough approximation:

$$P_e \approx Q\left(\frac{d_{min}}{\sqrt{2N_0}}\right)$$

- Each point has one nearest neighbour!
- Small *N*: Within an order of magnitude of correct value
- N = 2: No signal point can have more than 6 nearest neighbours
- Simple upper bound:

$$P_e \le (M-1)Q\left(\frac{d_{min}}{\sqrt{2N_0}}\right)$$

• Replace all distances in UB with d_{min} : Further over-estimation!

Simple but crude expressions (2/2)

- A lower bound:
 - k = # signals with at least one nearest neighbour
 - Lower bound for these signals is $Q\left(\frac{d_{min}}{\sqrt{2N_0}}\right)$
 - Ignore all other error events:

$$P_e \ge \frac{k}{M} Q\left(\frac{d_{min}}{\sqrt{2N_0}}\right)$$

• Crude lower bound $(k \ge 2)$:

$$P_e \ge \frac{2}{M} Q\left(\frac{d_{min}}{\sqrt{2N_0}}\right)$$

Comparison:

 $(M-1)/(\frac{2}{M}) \approx M^2/2$ for large *M* and $(M-1)/(\frac{2}{M}) = 1$ for M = 2

Cost of Non-Optimal Detection

Signals:

$$s_0(t) = a \cdot \phi_0(t)$$
$$s_1(t) = -a \cdot \phi_0(t)$$

1 7 1

Wrong basis function in receiver:

1.5

 $\theta_0(t)$

What is the cost of this non-ideal situation?

Detected signal points: $(\pm s_0, \theta_0) = \pm a \cdot (\phi_0, \theta_0) = \pm a \cdot \|\phi_0\| \cdot \|\theta_0\| \cdot \cos(\alpha) = \pm a \cdot \cos(\alpha)$ Effective distance: $d' = d \cdot \cos(\alpha)$

Resulting error probability:

 $P_{\rm e} = Q \left(\frac{d'}{\sqrt{2N_0}} \right)$

Signals are projected on basis functions

Example of Non-Optimal Detection

1

 $\frac{a^2}{N_0} = 5$ SNR: Signal points: $\pm a$

Distances: d = 2a

$$d' = d \cdot \cos(\alpha)$$

OMM

Ideal detection:

At $\alpha = \pi/4$:

2018-10-08

$$P_{\rm e} = Q\left(\frac{d}{\sqrt{2N_0}}\right) = Q(\sqrt{10}) \approx Q(3.16) \approx 7.9 \cdot 10^{-4}$$
$$P_{\rm e} = Q\left(\frac{d'}{\sqrt{2N_0}}\right) = Q(\sqrt{5}) \approx Q(2.24) \approx 1.25 \cdot 10^{-2}$$

 \mathbf{i}

Detection of Individual Bits

Question:

Is ML detection of symbols, followed by mapping to bits actually ML detection of bits?

What happens if we detect each bit directly?

2018-10-08

Example: 4-ASK

 B_0 is the first bit, B_1 is the second bit

Assume equal probability

Notation:

2018-10-08

- S: Signal point as stochastic variable (follows from B_0 and B_1)
- *X* : Received value as stochastic variable
- *x* : Realization of *X*

ML Detection of Symbols

ML Detection of B_0

ML Detection of B_1

Detection of Individual Bits: Summary

Question:

Is ML detection of symbols, followed by mapping to bits actually ML detection of bits?

Answer:

It depends on the constellation and on the mapping of bits to symbols:

- 4-ASK: Some difference at low SNR ($E_b/N_0 < 1$)
- QPSK: No difference at all!

How should we detect?

Independent bits: Detect each bit separately

Dependent bits: Detect a whole sequence (symbol by symbol – or more!)

Recall: Nyquist Criterion

Recall: Pulse-Amplitude Modulation (PAM):

$$x(t) = \sum_{n} s[n]p(t - nT)$$

Receiver filtering $\gamma(t)$, $\Gamma(f)$:

$$(\gamma * x)(t) = \sum_{n} s[n](\gamma * p)(t - nT)$$

Nyquist criterion:

$$\sum_{m=-\infty}^{\infty} \Gamma\left(f - \frac{m}{T}\right) P\left(f - \frac{m}{T}\right) = \text{Constant}$$

Called: p(t) and $\gamma(t)$ are Nyquist together

Bandwidth more than 1/(2T): Many Nyquist pulses

One-way Digital Communication System

OMM

Channel Filtering

Transmitted PAM signal

$$S(t) = \sum_{n} s[n]p(t - nT)$$

• Filtered by channel, impulse response h(t):

$$S(t) \longrightarrow h(t) \longrightarrow (S * h)(t)$$

Noise is added

$$X(t) = (S * h)(t) + W(t)$$

How will this affect the Nyquist criterion?

OMM

Nyquist Criterion with Channel Filtering (1/2)

Signal after Receiver filtering $\gamma(t)$, $\Gamma(f)$:

$$(\gamma * x)(t) = \sum_{n} s[n](\gamma * p * h)(t - nT) + (\gamma * W)(t)$$

Effective pulse:

$$(\gamma * p * h)(t)$$

Nyquist criterion:

$$\sum_{m=-\infty}^{\infty} \Gamma\left(f - \frac{m}{T}\right) H\left(f - \frac{m}{T}\right) P\left(f - \frac{m}{T}\right) = \text{Constant}$$

Can this be achieved in practice?

2018-10-08

TSKS01 Digital Communication - Lecture 6

Nyquist Criterion with Channel Filtering (2/2)

Nyquist criterion
$$\sum_{m=-\infty}^{\infty} \Gamma\left(f - \frac{m}{T}\right) H\left(f - \frac{m}{T}\right) P\left(f - \frac{m}{T}\right)$$
 is constant

- If $H(f) \neq 0$ everywhere with $P(f) \neq 0$ and P(f) is Nyquist
 - Pick $\Gamma(f) = 1/H(f)$ Impractical to depend on H(f)!
- If $H(f) \approx \text{constant}$ where $P(f) \neq 0$

2018-10-08

Pick Γ(f) and P(f) as Nyquist together

What if the Nyquist Criterion is not satisfied?

Sampled output

$$Z[k] = \sum_{n} s[n](\gamma * p * h)(kT - nT) + (\gamma * W)(kT)$$

Define $q[l] = (\gamma * p * h)(lT)$
$$W_{\gamma}[k]$$

- Inter-symbol interference if $g[l] \neq 0$ for some $l \neq 0$
 - Causal and time-limited pulses and impulse response

$$[l] \neq 0 \text{ for } l = 0, \dots, L - 1$$
$$Z[k] = \sum_{l=0}^{L-1} s[k-l]g[l] + W_{\gamma}[k]$$

g

L-tap Channel with Gaussian Noise

Sampled output

$$Z[k] = \sum_{l=0}^{L-1} s[k-l]g[l] + W_{\gamma}[k]$$

where $W_{\gamma}[k]$ is

- Gaussian with zero mean and variance $N_0/2$
- Independent for different values of k

This is called a dispersive channel

How to perform detection? This is the topic of the next lecture

LINKÖPING UNIVERSITY

www.liu.se