TSEK03: Radio Frequency Integrated Circuits (RFIC)

Lecture 3a: Background Ted Johansson, EKS, ISY ted.johansson@liu.se



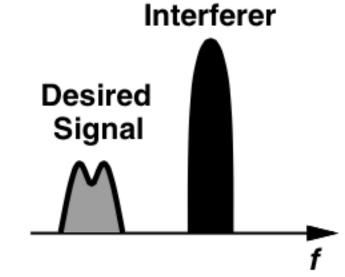
## Background: Overview

- Razavi:
  - Chapter 2.2 Effects of nonlinearity (mostly repetition from TSEK02)
  - Chapter 2.5 Matching
  - Chapter 2.6 Scattering parameters
- Lee:
  - Chapter 7 Smith chart and s-parameters



## 2.2 Linearity

- For a nonlinear device:  $i(V_{DC} + v) \approx a_0 + a_1 v + a_2 v^2 + a_3 v^3 + \dots$
- When strong signals are received, the LNA should remain linear
- Typically, weak signals are received in the presence of a strong interference. Linearity is important to suppress intermodulation distortion.





#### 2.2.1 Harmonic Distortion

• Consider a nonlinear system

x(t) 
$$- y(t) = \alpha_1 V_{in} + \alpha_2 V_{in}^2 + \alpha_3 V_{in}^3 + ...$$

Let us apply a single-tone (Acos $\omega t$ ) to the input and calculate the output:

$$y(t) = \alpha_1 A \cos \omega t + \alpha_2 A^2 \cos^2 \omega t + \alpha_3 A^3 \cos^3 \omega t$$
  

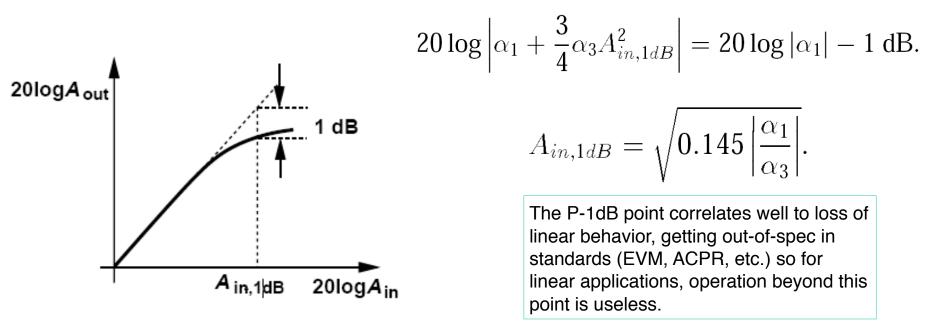
$$= \alpha_1 A \cos \omega t + \frac{\alpha_2 A^2}{2} (1 + \cos 2\omega t) + \frac{\alpha_3 A^3}{4} (3 \cos \omega t + \cos 3\omega t)$$
  

$$= \frac{\alpha_2 A^2}{2} + \left(\alpha_1 A + \frac{3\alpha_3 A^3}{4}\right) \cos \omega t + \frac{\alpha_2 A^2}{2} \cos 2\omega t + \frac{\alpha_3 A^3}{4} \cos 3\omega t.$$
  
DC Fundamental Second Harmonic Third Harmonic



#### 2.2.2 Gain compression

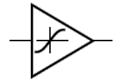
If sign of a<sub>1</sub> and a<sub>3</sub> are opposite then the point in which the output falls below its ideal value by 1 dB is called 1-dB compression point or P-1dB:





#### 2.2.4 Intermodulation

• If a two-tone signal is applied to a non-linear device:  $\begin{aligned} v &= A[cos(\omega_1 t) + cos(\omega_2 t)] \\ i(V_{DC} + v) \approx c_0 + c_1 v + c_2 v^2 + c_3 v^3 + \dots \end{aligned}$ 



- By combining these equations we get several tones:
  - DC and fundamental tones

$$(c_0 + c_2 A^2) + (c_1 A + \frac{9}{4} c_3 A^3) [\cos(\omega_1 t) + \cos(\omega_2 t)]$$

- Second and third harmonic terms

$$\left(\frac{c_2 A^2}{2}\right)\left[\cos(2\omega_1 t) + \cos(2\omega_2 t)\right] + \left(\frac{c_3 A^3}{4}\right)\left[\cos(3\omega_1 t) + \cos(3\omega_2 t)\right]$$

- Second order intermodulation (IM) products

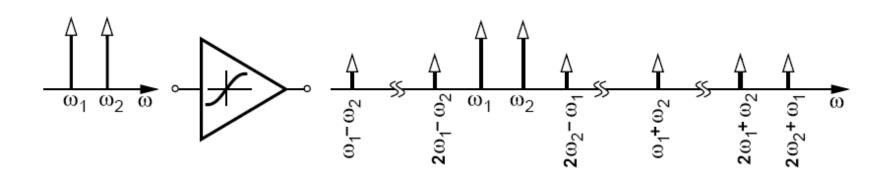
$$\left(\frac{c_2 A^2}{2}\right)\left[\cos(\omega_1 + \omega_2)t + \cos(\omega_1 - \omega_2)t\right]$$

- Third order IM products

$$(\frac{3c_3A^3}{4})[\cos(2\omega_1+\omega_2)t+\cos(2\omega_1-\omega_2)t+\cos(\omega_1-2\omega_2)t+\cos(\omega_1+2\omega_2)t]$$



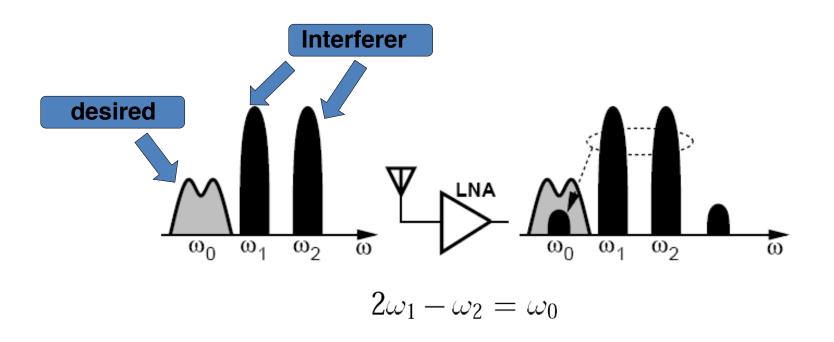
#### Intermodulation





#### Intermodulation

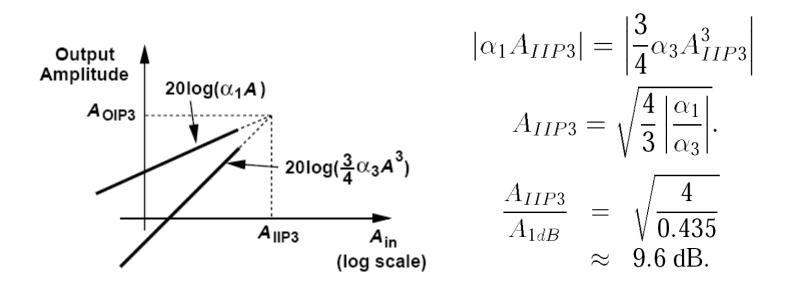
• Typically, weak signals are received in the presence of a strong interference. This might cause intermodulation distortion.





## Third-Order Intercept Point (IP3)

 Input-referred third-order intercept point (IIP3) is calculated by setting the IM3 products equal to the amplitude of the fundamental tone (A<sub>1</sub>=A<sub>2</sub>=A):





#### IP3: measurement

- Circuits are non-linear at high power levels
- Measured at low power levels (check the slopes!), extrapolate!

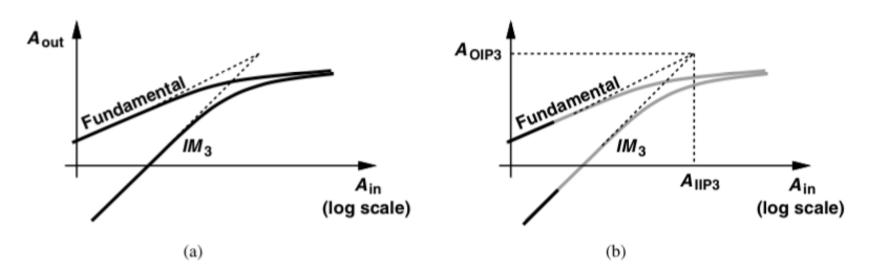
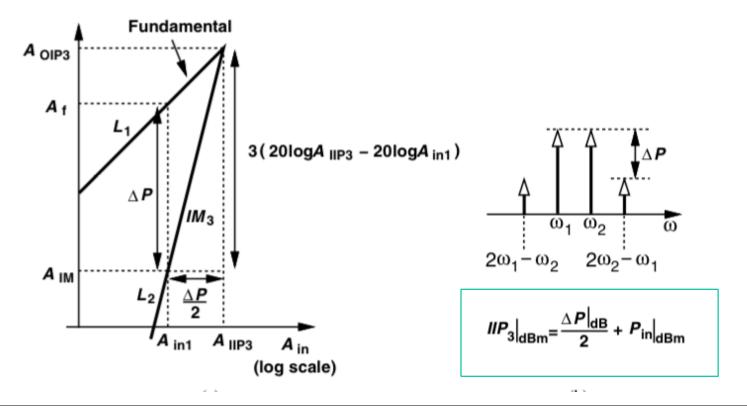


Figure 2.21 (a) Actual behavior of nonlinear circuits, (b) definition of IP<sub>3</sub> based on extrapolation.



#### IP3: measurement

• Shortcut technique if slopes are OK.

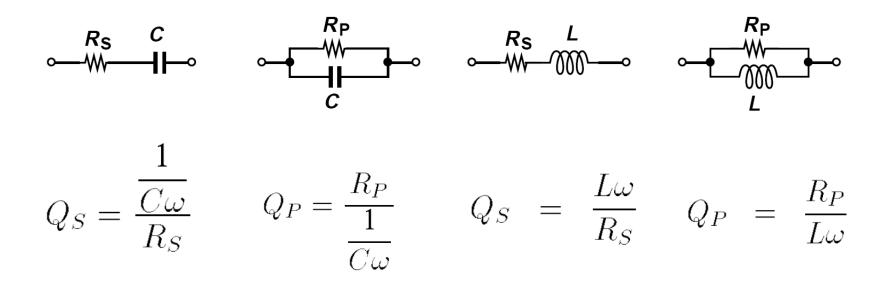




TSEK03 Integrated Radio Frequency Circuits 2019/Ted Johansson

#### 2.5 Passive impedance transformation

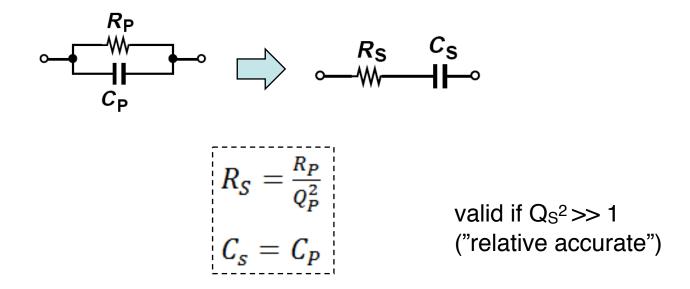
- a.k.a. Matching networks
- 2.5.1 Quality Factor, Q, indicates how close to ideal an energy-storing device is.





#### Parallel-to-series conversion

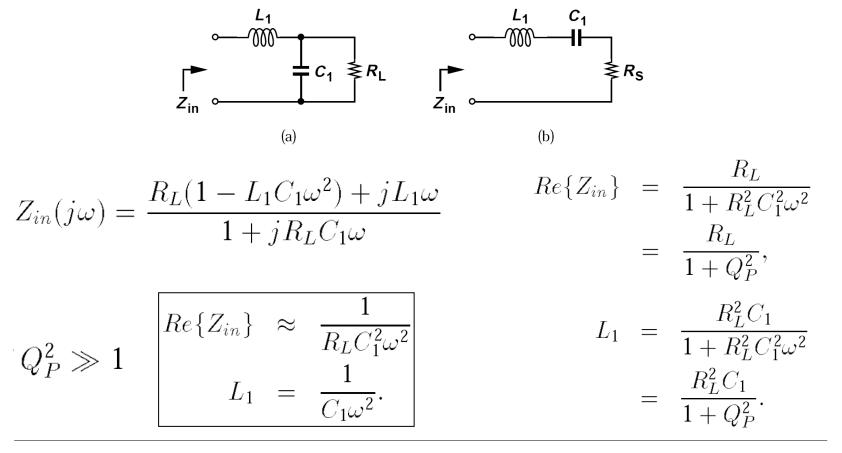
- Series-to-Parallel Conversion: will retain the value of the capacitor but raises the resistance by a factor of  $Q_s^2$
- Parallel-to-Series Conversion: will reduce the resistance by a factor of Q<sub>P</sub><sup>2</sup>





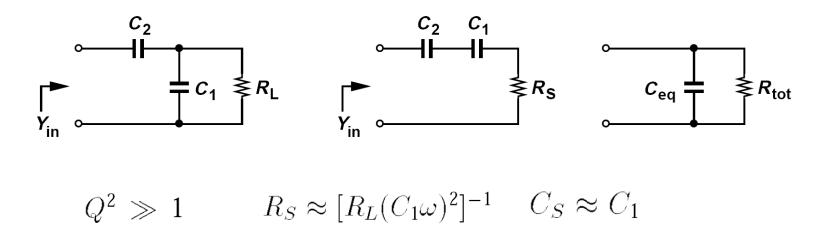
#### Basic matching networks

• Load resistance transformed to a lower value ( $Z_{in} < R_L$ ):





#### Transfer a resistance to a higher value



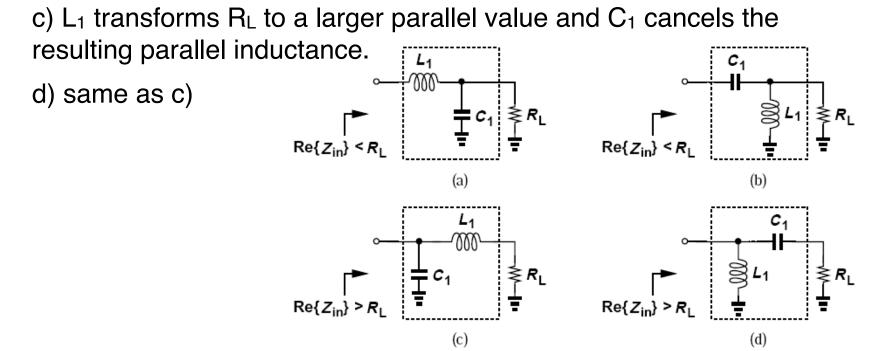
Note that any imaginary component (often capacitance) must first be cancelled by an inductor at the input.



#### L sections

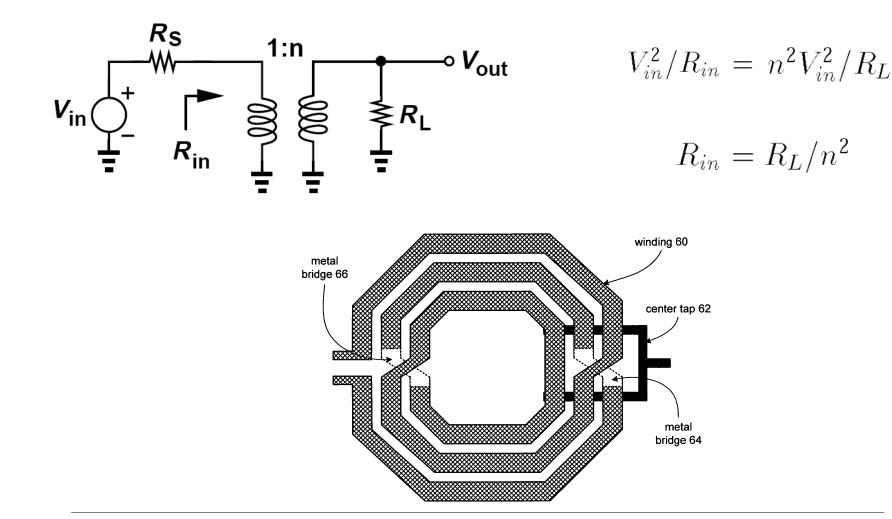
a)  $C_1$  transforms  $R_L$  to a smaller series value and  $L_1$  cancels  $C_1$ .

b)  $L_1$  transforms  $R_L$  to a smaller series value while  $C_1$  resonates with  $L_1$ .





#### Impedance matching by transformers

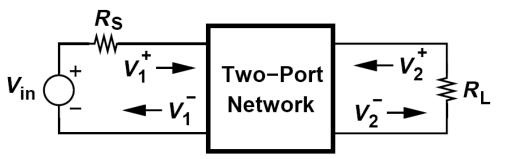




# 2.6 Scattering (S-) parameters

- Microwave circuits (transfer of power) vs. analog design (voltage). Affects tools, methods, models, etc.
- z-parameters require open/ short termination for measurements which are hard to obtain for high frequencies (couple of 100 MHz).
- With S-parameters (scattering eller power wave) V<sub>in</sub> terminations (50 Ohms) are instead used for measurements

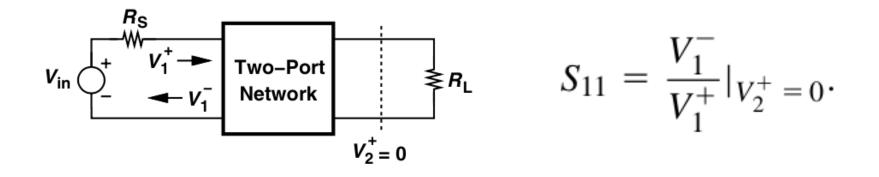






#### S-parameters

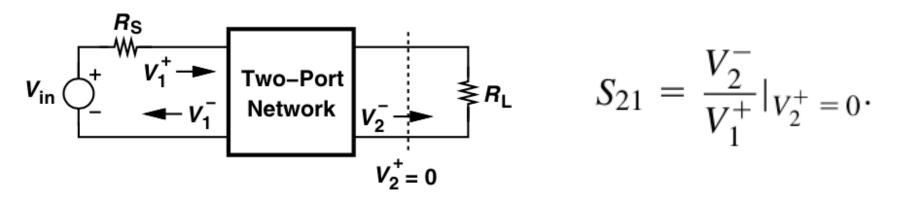
S<sub>11</sub> is the ratio of the reflected and incident waves at the input port when the reflection from R<sub>L</sub> (i.e., V<sub>2</sub><sup>+</sup>) is zero.
 Represents the input matching (but reflection, not impedance!).





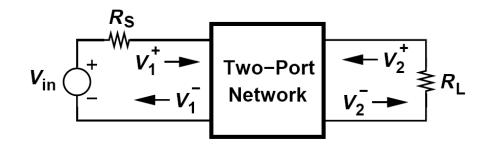
#### S-parameters

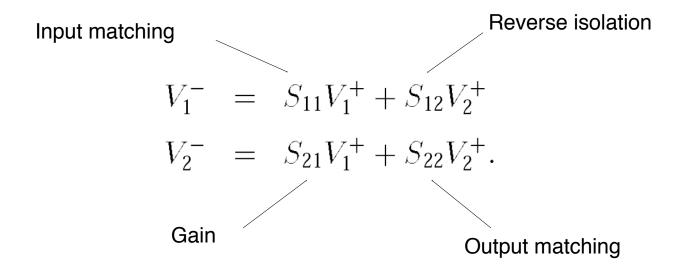
S<sub>21</sub> is the ratio of the wave incident on the load to that going to the input when the reflection from R<sub>L</sub> is zero.
 Represents the gain.





#### s-parameters





complex = Re+Im or A+Ph, and frequency dependent



#### S and Z parameters

$$Z_{11} = \frac{((1+S_{11})(1-S_{22})+S_{12}S_{21})}{\Delta_S}Z_0$$
$$Z_{12} = \frac{2S_{12}}{\Delta_S}Z_0$$
$$Z_{21} = \frac{2S_{21}}{\Delta_S}Z_0$$
$$Z_{22} = \frac{((1-S_{11})(1+S_{22})+S_{12}S_{21})}{\Delta_S}Z_0$$

Where

$$\Delta_S = (1 - S_{11})(1 - S_{22}) - S_{12}S_{21}$$

The input impedance of a two-port network is given by:

$$Z_{in} = Z_{11} - \frac{Z_{12}Z_{21}}{Z_{22} + Z_L}$$

where Z<sub>L</sub> is the impedance of the load connected to port two.



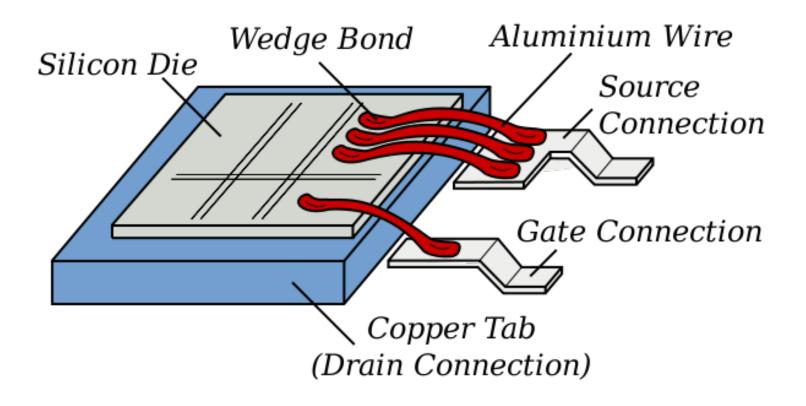
## S-parameters

- S-parameters are typically measured using a <u>network analyzer</u>
- data is often displayed using <u>Smith-charts</u>





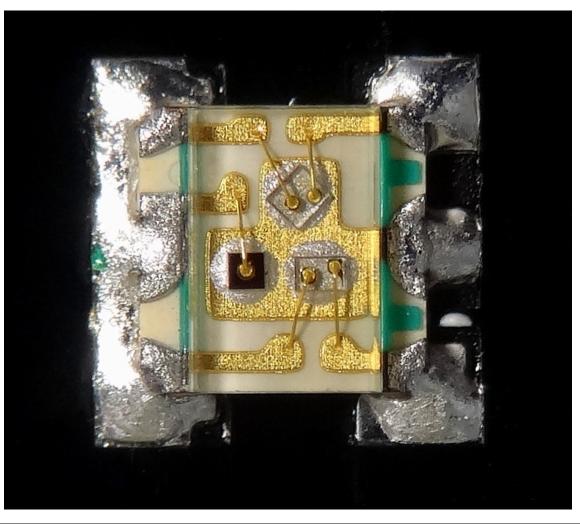
## **RF-IC** packaging and measurements



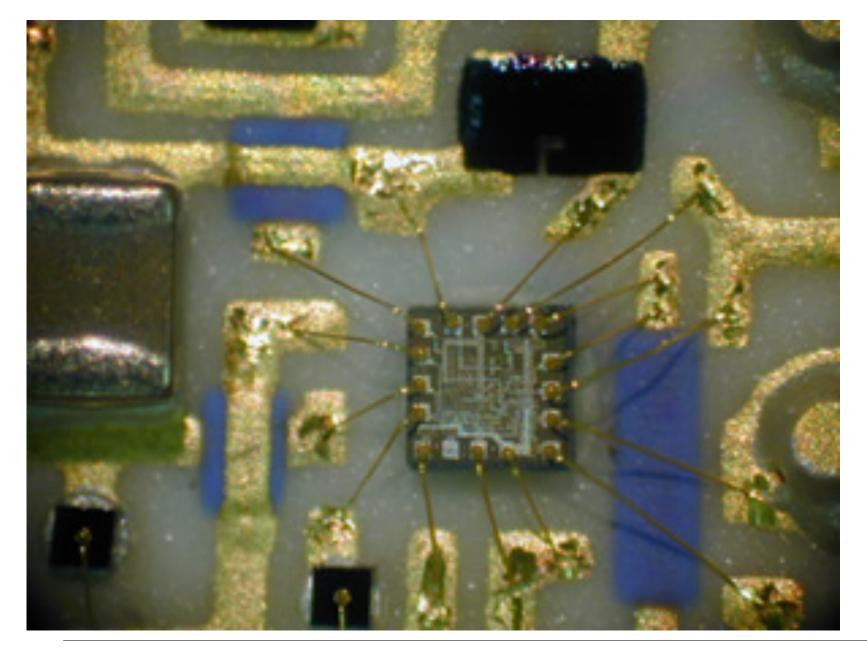
[Wikipedia]



## **RF-IC** packaging

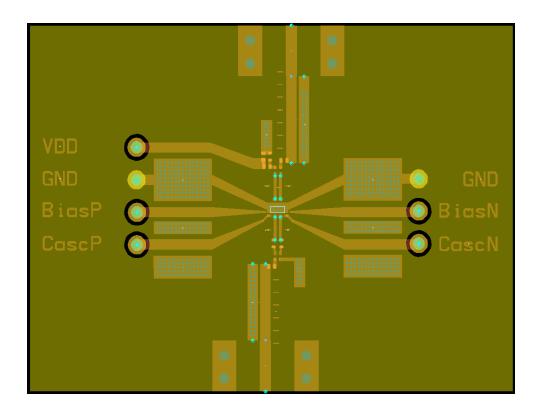


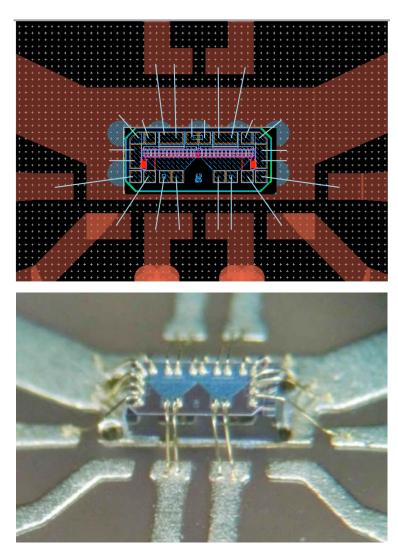






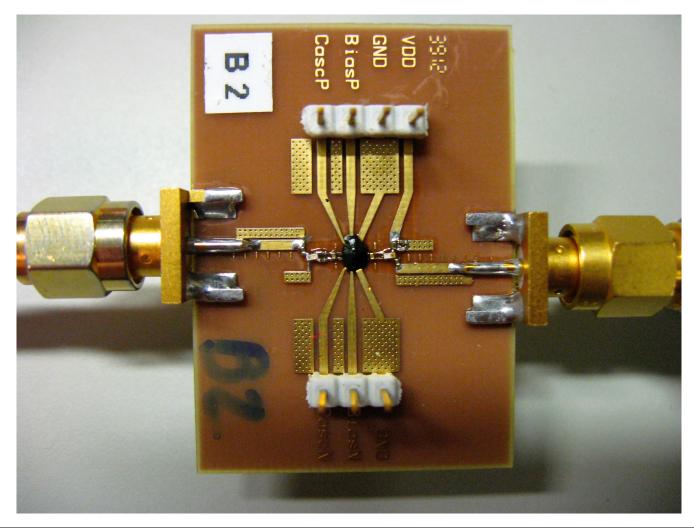
## **PCB** and Bonding





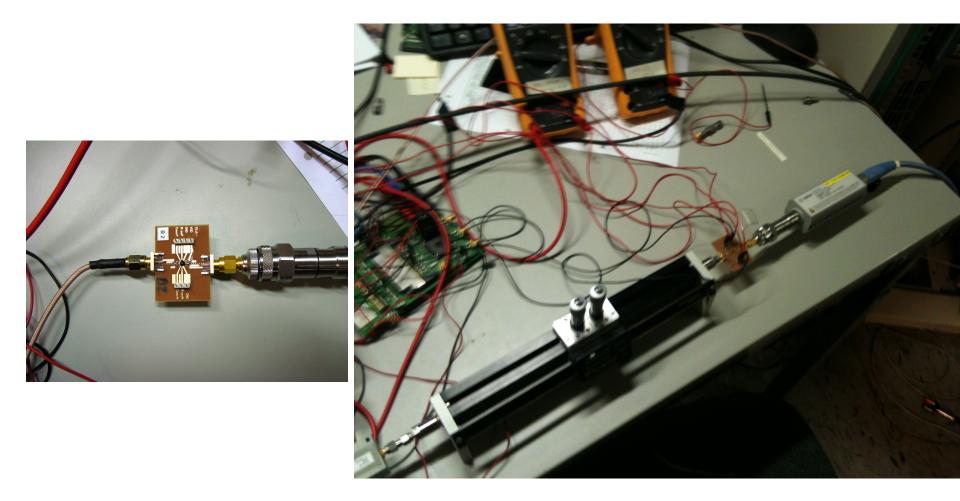


#### Mounted/soldered PCB

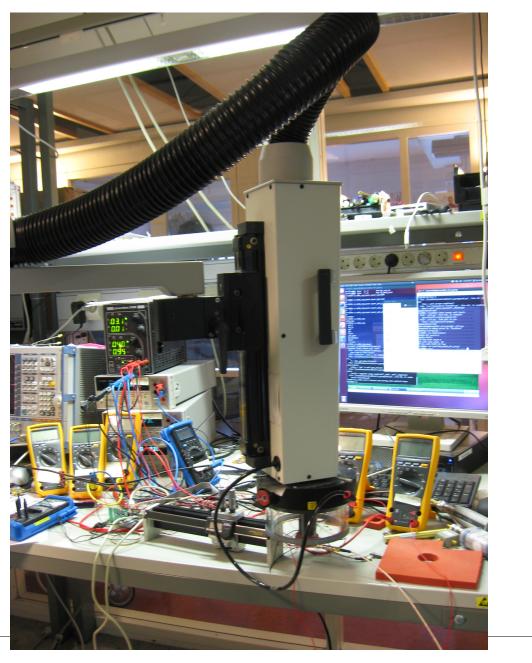




#### PCB measurements

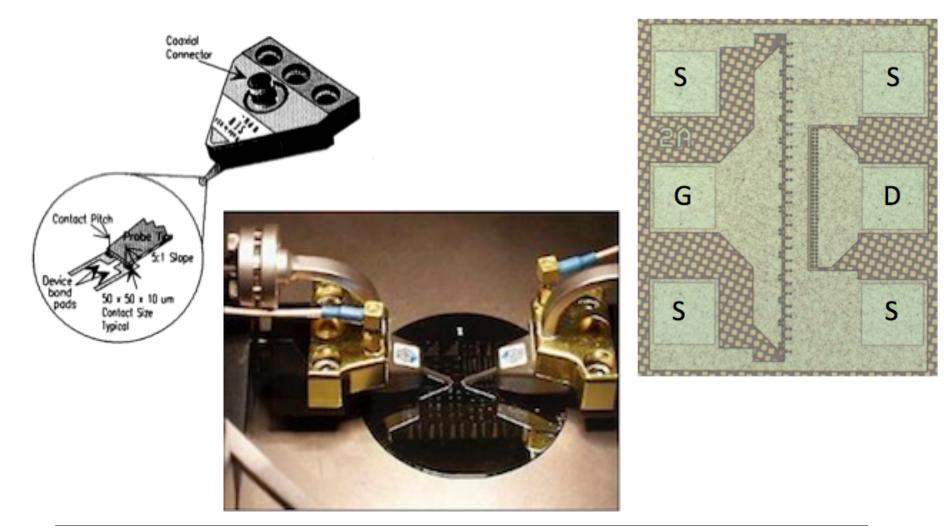








#### **On-wafer measurements**





## Summary: S-parameters

- S-parameters are a powerful way to describe a linear electrical network at high frequency
- S-parameters change with frequency, load impedance, source impedance, network
- $S_{11}$  is the reflection coefficient
- S<sub>21</sub> describes the forward transmission coefficient (corresponds to gain)
- S-parameters have both magnitude and phase information
- S-parameters may describe large and complex networks



## Stability (no self-oscillations)

 Stability of an RF circuit can be checked by Stern (Rollett) stability factor which is based on S-parameters:

$$K = \frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{12}S_{21}|}$$

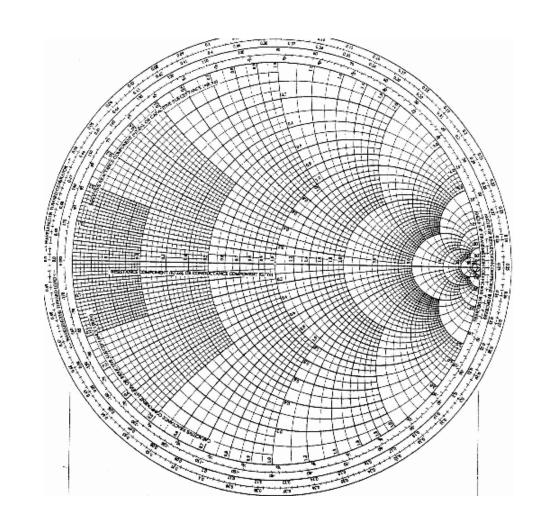
$$\Delta = |S_{11}S_{22} - S_{12}S_{21}|$$

• If K > 1 and  $|\Delta| < 1$ , then the circuit is unconditionally stable for any combination of input and output impedances.





Philip H Smith (1905 – 1987)



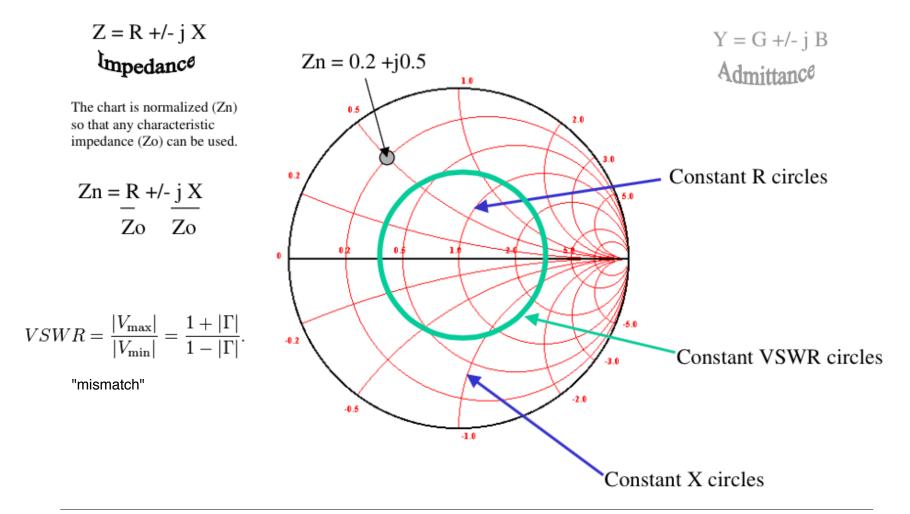


- The Smith chart is one of the most useful graphical tools for high frequency circuit applications.
- The goal of the Smith chart is to identify all possible impedances on the domain of existence of the reflection coefficient.

$$Z(d) = \frac{V(d)}{I(d)} = Z_0 \frac{1 + \Gamma(d)}{1 - \Gamma(d)} \qquad \Gamma = \frac{Z_L - 1}{Z_L + 1}$$

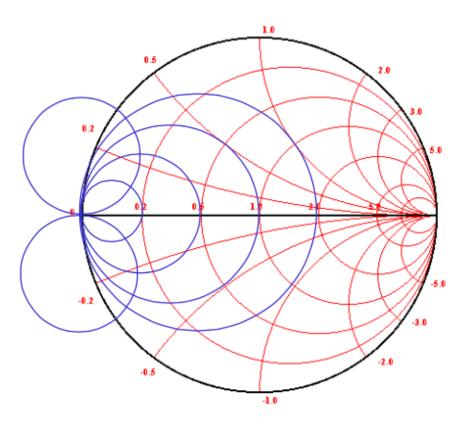
• "Normalized reflection coefficient":  $Z(d) = Z_0 * z(d)$ 





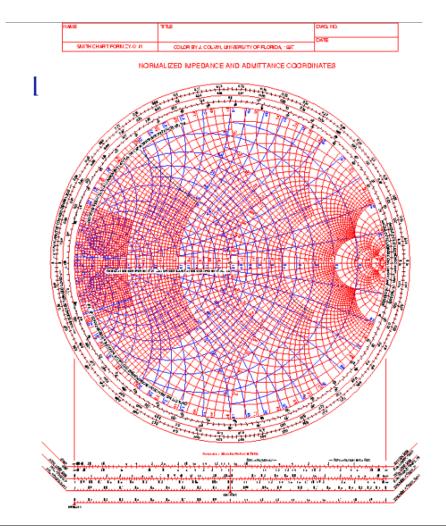


 There's also a mirror image of the chart that instead of having constant resistance circles, and constant reactance curves, has instead constant conductance circles and constant susceptance curves.





## The full Smith chart





## Smith Chart applications

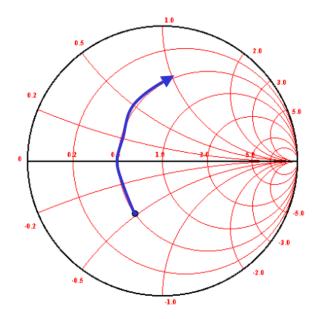
- Plotting/displaying impedances, e.g. as a function of frequency.
- Matching (impedance transformation)
- Determine VSWR
- ....



## L in the Smith chart

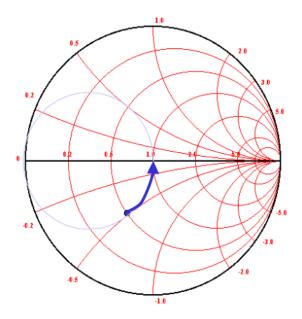
Series Inductors

Moves clockwise along circles of constant resistance



#### **Shunt** Inductors

Moves counter-clockwise along circles of constant conductance

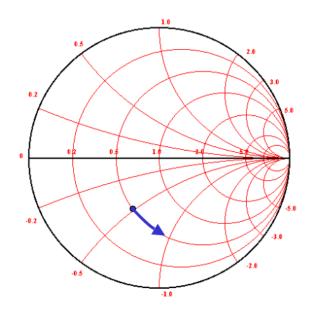




## C in the Smith chart

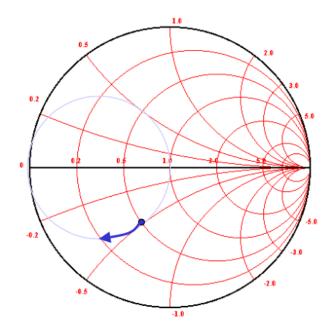
Series Capacitors

Moves counter-clockwise along circles of constant resistance



#### **Shunt** Capacitors

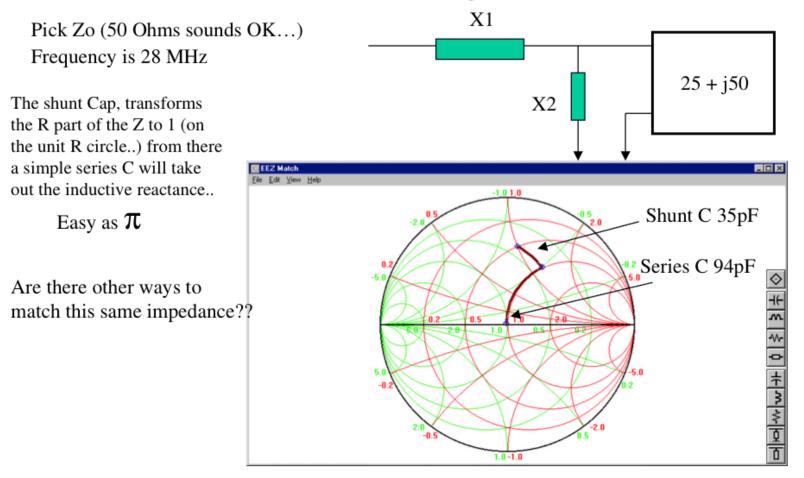
Moves clockwise along circles of constant conductance





## Matching using Smith chart

Let's do some matching with L's and C's





## Matching using Smith chart

