TSEK03: Radio Frequency Integrated Circuits (RFIC)

Lecture 3b & 4: LNA

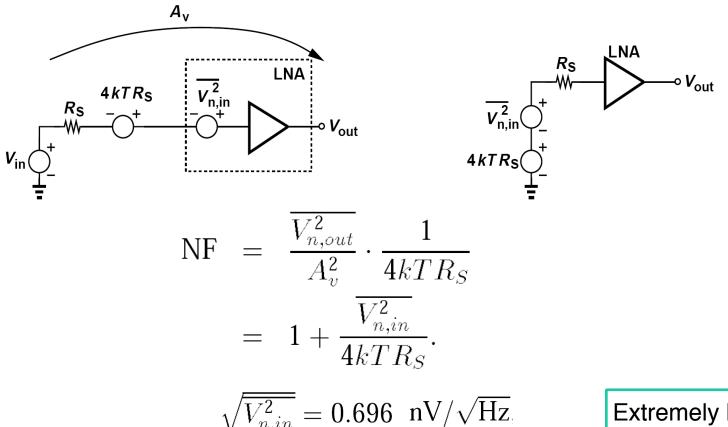
Ted Johansson, EKS, ISY

<u>ted.johansson@liu.se</u>

LNA: Overview

- Razavi: Chapter 5, pp. 259-295, 318-322.
- Lee: Chapter 11, pp. 334-362.

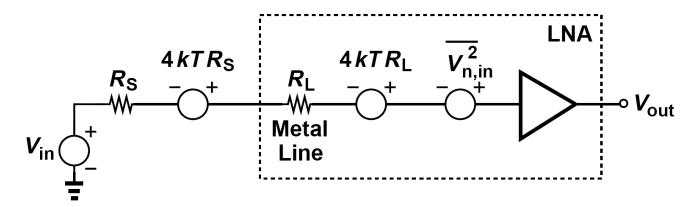
- 5.1 LNA intro: NF, gain, return loss, stability, linearity
- 5.2 Input matching
- 5.3 LNA topologies (selected)


5.1 Low-Noise Amplifier

- The first stage of a receiver is usually a low-noise amplifier (LNA). The noise figure of the LNA directly adds to that of the receiver.
- It amplifies a weak signal (has gain) and should add as little as possible noise to this weak signal (NF about 2-3 dB is expected).
- Input matching (i.e., 50 Ω input impedance) is necessary, specially when a filter precedes the LNA.
- Trade-offs between gain, input impedance, noise figure, and power consumption should be considered carefully.
- In this section: NF, gain, input return loss, stability, linearity, bandwidth, power dissipation are discussed.

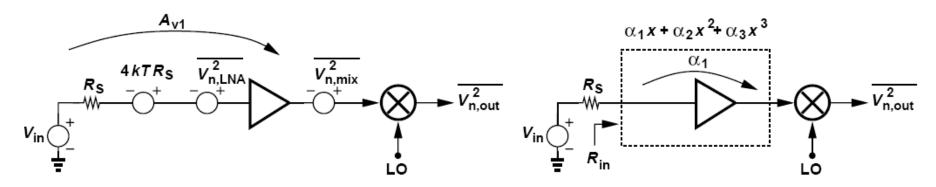
General considerations: NF

How much is a NF of 2 dB (source impedance of 50 Ω)?


Extremely low!

 A student lays out an LNA and connects its input to a pad through a metal line 200 μm long. In order to minimize the input capacitance, the student chooses a width of 0.5 μm for the line. Assuming a noise figure of 2 dB for the LNA and a sheet resistance of 40 mΩ/□ for the metal line, determine the overall noise figure. Neglect the input-referred noise current of the LNA.

 A student lays out an LNA and connects its input to a pad through a metal line 200 μm long. In order to minimize the input capacitance, the student chooses a width of 0.5 μm for the line. Assuming a noise figure of 2 dB for the LNA and a sheet resistance of 40 mΩ/□ for the metal line, determine the overall noise figure. Neglect the input-referred noise current of the LNA.


General considerations: Gain

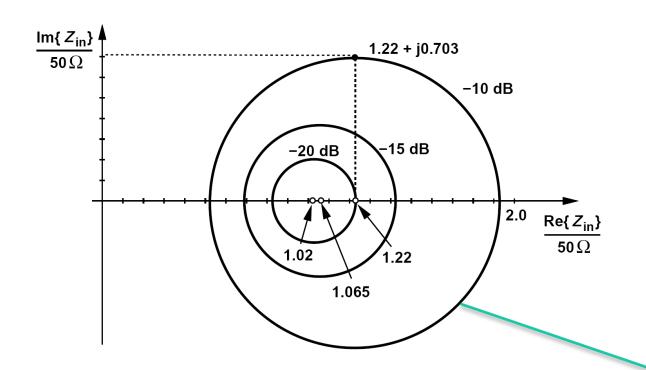
- The gain of the LNA must be large enough to minimize the noise contribution of subsequent stages, specifically, the downconversion mixer(s).
- Usually leads to a compromise between the noise figure and the linearity of the receiver.
- The noise and IP3 of the stage following the LNA are divided by different LNA gains.
- (Modern design often have not matching between LNA and mixer, therefore voltage gains are easier to use.)

LNA: Gain

LNA+mixer:

$$\begin{split} \text{NF}_{\text{tot}} &= \frac{A_{v1}^2(\overline{V_{n,LNA}^2} + 4kTR_S) + \overline{V_{n,mix}^2}}{A_{v1}^2} \frac{1}{4kTR_S} \\ &= \text{NF}_{\text{LNA}} + \frac{\overline{V_{n,mix}^2}}{A_{v1}^2} \cdot \frac{1}{4kTR_S}. \\ &\frac{1}{\text{IP}_{3,\text{tot}}^2} = \frac{1}{\text{IP}_{3,\text{LNA}}^2} + \frac{\alpha_1^2}{\text{IP}_{3,\text{mixer}}^2} \\ \end{split}$$

General considerations: Input Return Loss


- Input matching of the LNA is required to transfer the maximum power from antenna to the LNA if there is no filter between. If there is a filter, this matching is a must to keep the characteristics of filter.
- The quality of the input match is expressed by the input "return loss", defined as the reflected power divided by the incident power. For a source impedance of R_S, the **return loss** is given by:

$$\Gamma = \left| \frac{Z_{in} - R_S}{Z_{in} + R_S} \right|^2$$

General considerations: Input Return Loss

• Figure below plots contours of constant Γ in the Z_{in} plane. Each contour is a circle with its center shown.

Input return loss

$$\Gamma = \left| \frac{Z_{in} - R_S}{Z_{in} + R_S} \right|^2$$

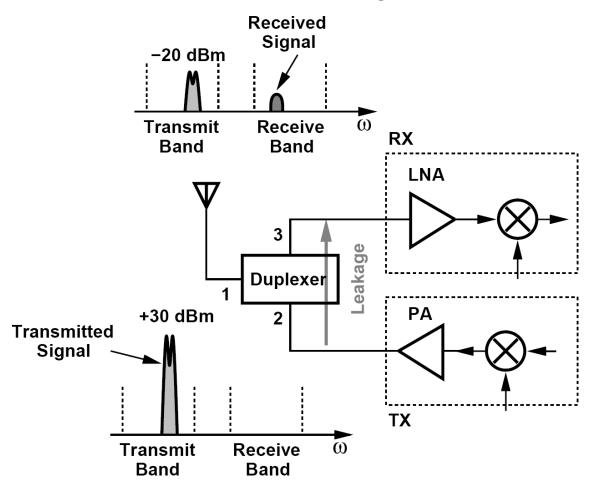
< -10 dB (<10 %) is usually acceptable

constant Γ

General considerations: Stability

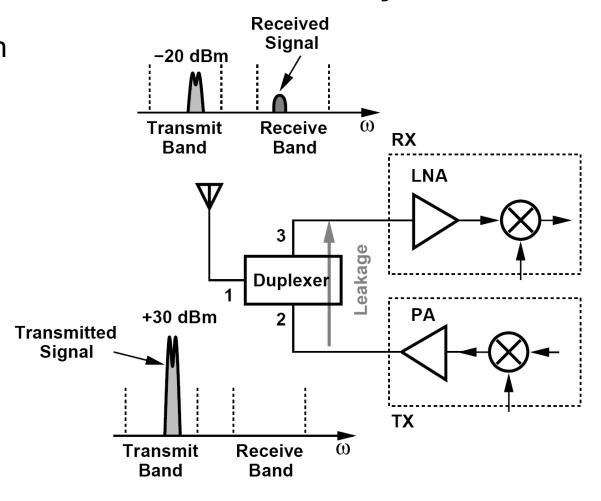
- Oscillations leads to high non-linearity and "strange" behavior.
- Stability of an RF circuit can be checked by Stern (Rollett) stability factor which is based on s-parameters:

$$K = \frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{12}S_{21}|} \qquad K > 1$$


$$\Delta = |S_{11}S_{22} - S_{12}S_{21}| \qquad |\Delta| < 1$$

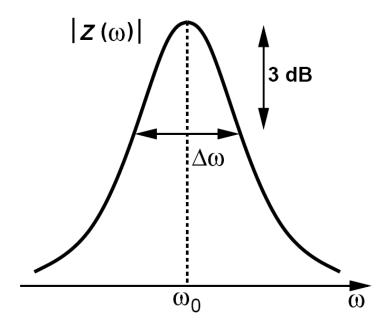
• If K > 1 and $\Delta < 1$, then the circuit is unconditionally stable for any combination of input and output impedances.

General considerations: Linearity


- In most applications, the LNA does not limit the linearity of the receiver.
- An exception to the above rule arises in "fullduplex" systems.

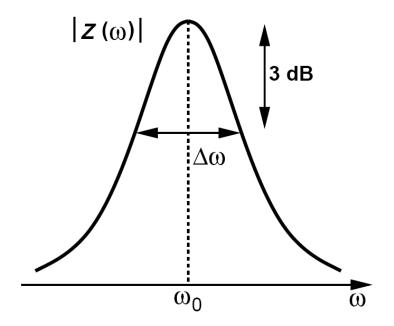
General considerations: Linearity

Leakages through the filter and the package yield a finite isolation between ports 2 and 3 as characterized by an S₃₂ of about -50 dB. The received signal may be overwhelmed.



General considerations: Bandwidth

- The LNA must provide a relatively flat response for the frequency range of interest, preferably with less than 1 dB of gain variation. The LNA -3-dB bandwidth must therefore be substantially larger than the actual band so that the rolloff at the edges remains below 1 dB.
- "Fractional bandwidth" defined as the total -3-dB bandwidth divided by the center frequency of the band.

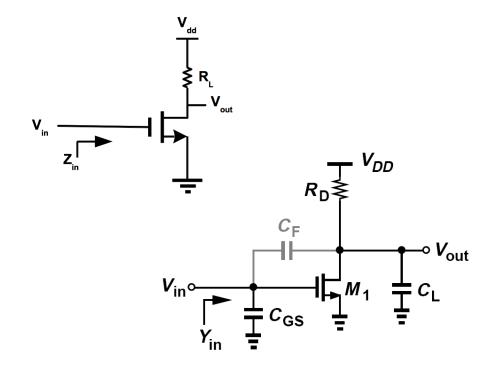


 An 802.11a LNA must achieve a -3-dB bandwidth from 5 GHz to 6 GHz. If the LNA incorporates a second-order LC tank as its load, what is the maximum allowable tank Q?

• As illustrated in figure below, the fractional bandwidth of an LC tank is equal to $\Delta\omega/\omega_0 = 1/Q$. Thus, the Q of the tank must remain less than 5.5 GHz/1 GHz = 5.5.

LNA Power Dissipation

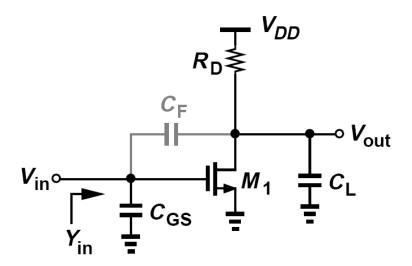
- The LNA typically exhibits a direct trade-off among noise, linearity, and power dissipation.
- In most receiver designs, the LNA consumes only a small fraction of the overall power.
- Conclusion: the LNAs noise figure generally proves much more critical than its power dissipation.



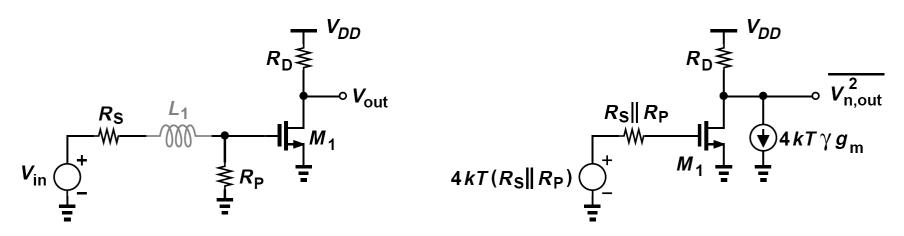
5.2 Input Matching

- LNAs are typically designed to provide a $50-\Omega$ input resistance and negligible input reactance. This requirement limits the choice of LNA topologies.
- Generic amplifier

$$Z_{in} = Re\{Z_{in}\} + Im\{Z_{in}\}$$


With more details

Input Matching


- At high frequency, Re{Z_{in}} can be quite low because of C_{GD} feedback (C_F) + 2nd order effects at the gate-oxide interface
- $Im\{Z_{in}\}$ comes from C_{GS} , which is a large capacitor => small $Im\{Z_{in}\}$ (far away from 50 Ω)

Input Matching: Resistive termination?

- Such a topology is designed in three steps:
- (1) M₁ and R_D provide the required noise figure and gain
- (2) R_P is placed in parallel with the input to provide $Re\{Z_{in}\} = 50 \Omega$
- (3) an inductor is interposed between R_S and the input to cancel $Im\{Z_{in}\}$.

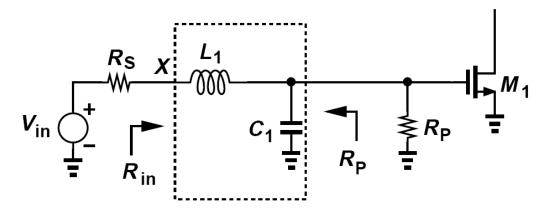
Circuit with resistive input matching

Simplified for noise analysis

Input Matching: Resistive termination

Express the total output noise as:

$$\overline{V_{n,out}^2} = 4kT(R_S||R_P)(g_mR_D)^2 + 4kT\gamma g_m R_D^2 + 4kTR_D$$
 (5.17)


NF is given by:

$$NF = 1 + \frac{R_S}{R_P} + \frac{\gamma R_S}{g_m(R_S||R_P)^2} + \frac{R_S}{g_m^2(R_S||R_P)^2 R_D}$$
 (5.18)

- For R_S ≈ R_P, NF will be ≥ 3 dB.
- We need better ways to provide good input matching without the noise of a physical resistor!

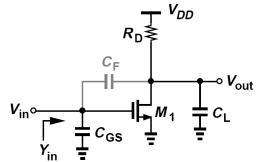
• A student decides to defy the above observation by choosing a large R_P and transforming its value down to R_S. The resulting circuit is shown below (left), where C₁ represents the input capacitance of M₁. (The input resistance of M₁ is neglected.) Can this topology achieve a noise figure less than 3 dB?

- Long derivation in the book => NF = 3 dB
- Conclusion: no.

5.3, 5.6 Some LNA Topologies

- Proper input (conjugate) matching of LNAs requires certain circuit techniques that yield a real part of 50 Ω in the input impedance without the noise of a 50- Ω resistor.
- The <u>noise figure</u>, <u>input matching</u>, and <u>gain</u> are the principal targets in LNA design. We will present a number of LNA topologies and analyze their behavior with respect to these targets.

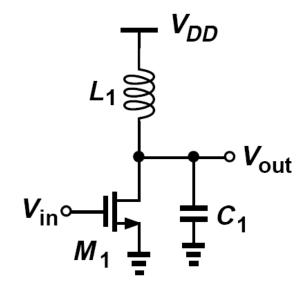
Common–Source Stage with	Common–Gate Stage with	Broadband Topologies
✓ Inductive Load	✓∎ Inductive Load	■ Noise-Cancelling LNAs
✓ Resistive Feedback	✓ ■ Feedback	■ Reactance–Cancelling LNAs
✓∎ Cascode,	■ Feedforward	
Inductive Load, ✓ Inductive Degeneration	✓∎ Cascode and Inductive Load	✓ Differential


5.3.1 CS with inductive load

 In general, the trade-off between the voltage gain and the supply voltage in the <u>CS stage with resistive load</u> makes it less attractive as the supply voltage scales down with technology.
 For example, at low frequencies:

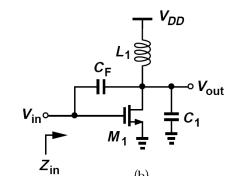
$$|A_v| = g_m R_D$$

$$= \frac{2I_D}{V_{GS} - V_{TH}} \cdot \frac{V_{RD}}{I_D}$$


$$= \frac{2V_{RD}}{V_{GS} - V_{TH}},$$

- A CS stage with resistive load does not provide proper matching
- To circumvent the trade-off expressed above and also operate at higher frequencies, the CS stage can incorporate an <u>inductive load</u>.

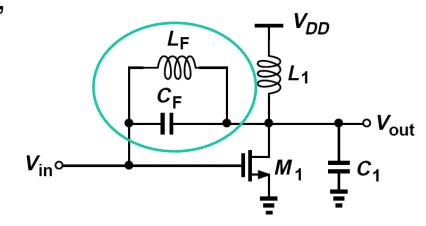
CS with inductive load


- With an inductive load:
 - It can operate with very low supply voltages (smaller DC drop over inductor).
 - L₁ resonates with the total capacitance at the output node (C₁), affording a much higher operation frequency than the resistively-loaded counterpart.

CS with inductive load: input match

• Considering C_F (C_{gd} feedback or Miller cap), derivations (p. 272) show that the real part of input impedance can be positive and it is possible to get 50 Ω .

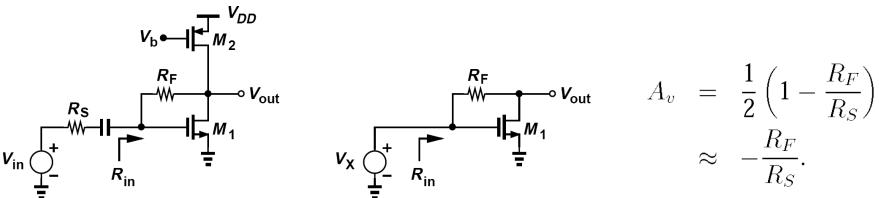
$$Re\{Z_{in}\} = \frac{g_m L_1^2 (C_1 + C_F) \omega^2 + R_S (1 + g_m R_S) (C_1 + C_F) - (R_S C_1 + g_m L_1)}{D} \omega. \quad (5.35)$$


 But at some frequency, Z_{in} becomes negative and might cause instability in the LNA:

$$\omega_1^2 = \frac{R_S C_1 + g_m L_1 - (1 + g_m R_S) R_S (C_1 + C_F)}{g_m L_1^2 (C_1 + C_F)}.$$
 (5.36)

CS with inductive load: neutralization

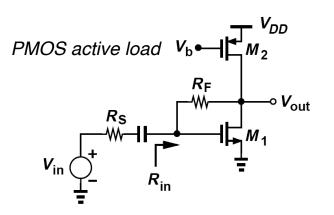
- The feedback capacitance C_F
 gives rise to a negative input
 resistance at other frequencies,
 potentially causing instability.
- It is possible to "neutralize" the effect of C_F in some frequency range through the use of parallel resonance.
- Will introduce significant parasitic capacitances at the input and output and degrading the performance.



5.3.2 CS with resistive feedback

- Neglecting the channel length modulation => $R_{in} = 1/g_{m1}$
- So we select $g_{m1} = 1/R_s$ to provide matching
- Gain after matching (if R_F>>R_S):

PMOS active load


No bias current through $R_F => No$ trade-off between A_v and V_{dd}



CS with resistive feedback

• NF (p. 274/275):

The noise of R_F appears at the output

Figure 5.14 *Effect of noise of (a)* R_F *and (b)* M_1 *in CS stage.*

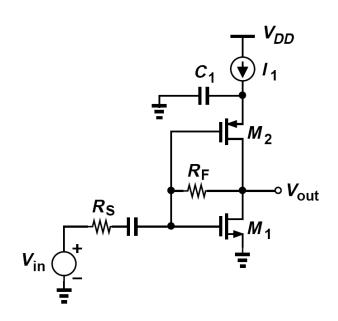
• $R_{out} = (R_F + R_S)/2$

$$\overline{V_{n,out}^2}|_{M1,M2} = 4kT\gamma(g_{m1} + g_{m2})\frac{(R_F + R_S)^2}{4}$$
 (5.47)

CS with resistive feedback

$$NF = 1 + \frac{4R_F}{R_S \left(1 - \frac{R_F}{R_S}\right)^2} + \frac{\gamma(g_{m1} + g_{m2})(R_F + R_S)^2}{\left(1 - \frac{R_F}{R_S}\right)^2 R_S}$$
(5.48)

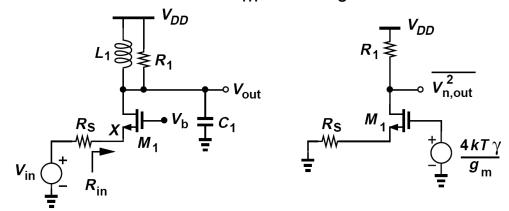
(5.49)
$$\approx 1 + \frac{4R_S}{R_E} + \gamma (g_{m1} + g_{m2}) R_S$$
 $R_F >> R_S$


(5.50)
$$\approx 1 + \frac{4R_S}{R_F} + \gamma + \gamma g_{m2} R_S.$$
 $g_{m1} = 1/R_S$

For γ≈1, NF > 3 dB even if rest of the terms are less than 1

 In the circuit, the PMOS current source is converted to an "active load," amplifying the input signal. The idea is that, if M₂ amplifies the input in addition to injecting noise to the output, then the noise figure may be lower.

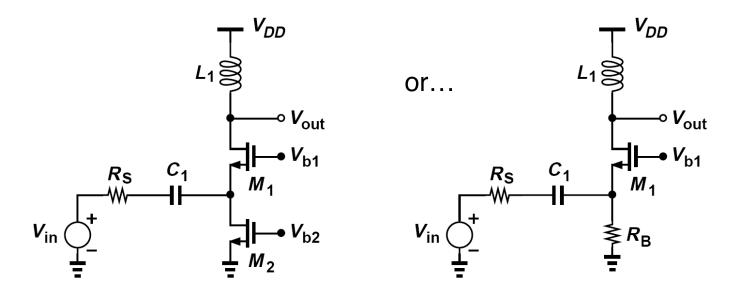
Neglecting channel-length modulation, calculate the noise figure.


(Current source I_1 defines the bias current and C_1 establishes an ac ground at the source of M_2).

5.3.3 Common Gate with inductive load

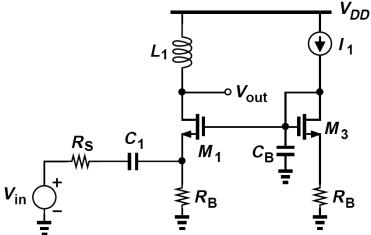
• Low input impedance of common gate ($\approx 1/g_m$) makes it attractive. Possible to select $g_m = 1/R_s$.

$$\frac{V_{out}}{V_X} = g_m R_1 \qquad \overline{V_{n,out}^2}|_{M1} = \frac{4kT\gamma}{g_m} \left(\frac{R_1}{R_S + \frac{1}{g_m}}\right)^2 \\
= \frac{R_1}{R_S} \qquad = kT\gamma \frac{R_1^2}{R_S}.$$



Common Gate with inductive load

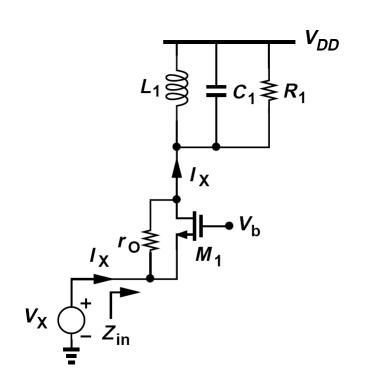
NF =
$$1 + \frac{\gamma}{g_m R_S} + \frac{R_S}{R_1} \left(1 + \frac{1}{g_m R_S} \right)^2$$
 (5.57)
= $1 + \gamma + 4 \frac{R_S}{R_1}$. (5.58)


- Even if 4R_S/R₁ << 1+ γ, still around 3 dB or higher.
- g_m=1/R_S => higher g_m yields a lower NF but also a lower input resistance.

 To provide the bias current of CG stage, is using a resistor (R_B) better than using a transistor (M₂)?

- Since V_{GS2} - $V_{TH2} \le V_{RB}$, the noise contribution of M_2 is about twice that of R_B (for $\gamma \approx 1$). Additionally, M_2 may introduce significant capacitance at the input node.
- The use of a resistor is therefore preferable, as long as R_B is much greater than R_S so that it does not attenuate the input signal. Note that the input capacitance due to M₁ may still be significant. We will return to this issue later. Figure below shows an example of proper biasing in this case.

CG with CLM (r₀ channel length modulation)(p. 279)

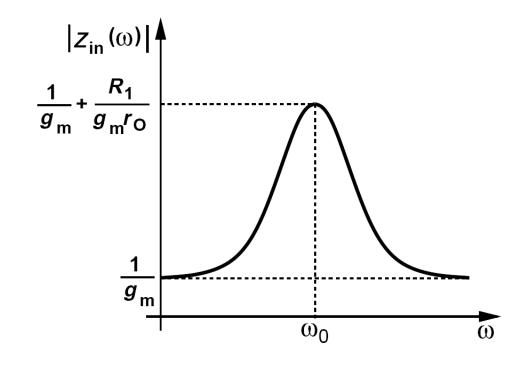

• In the presence of CLM $(r_o \neq \infty)$:

$$V_X = r_O(I_X - g_m V_X) + I_X R_1$$

$$\frac{V_X}{I_X} = \frac{R_1 + r_O}{1 + g_m r_O}$$

$$\frac{V_{out}}{V_{in}} = \frac{g_m r_O + 1}{2\left(1 + \frac{r_O}{R_1}\right)}$$

g_mr₀ usually <10



If r_O and R_1 are comparable, then gain $\sim g_m r_O/4$, a very low value.

Example 5.9

- Plot the input impedance as a function of frequency (neglect M₁ cap)
- At very low or high frequency, Z_{in} = 1/g_m
- At some resonance frequency, the tank will influence Z_{in} considerably!

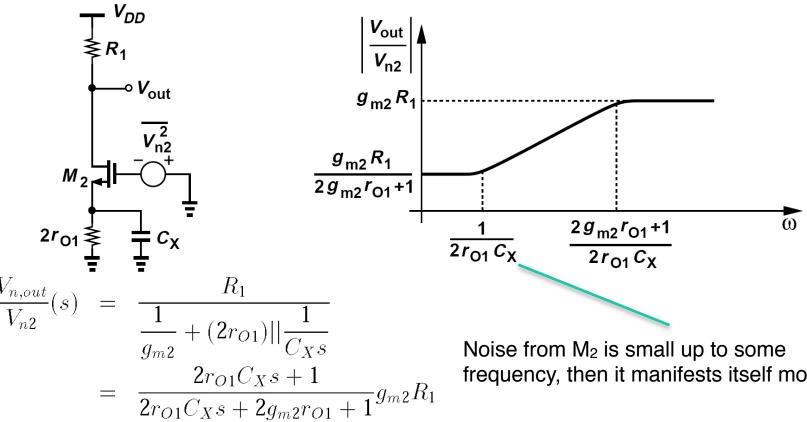
Cascode CG (p. 281)

 To lower the input impedance in the presence of CLM, one solution is to use a CG cascode stage.

$$R_X = \frac{R_1 + r_{O2}}{1 + g_{m2}r_{O2}}$$

$$R_{in} = \left(\frac{R_1 + r_{O1}}{1 + g_{m2}r_{O2}} + r_{O1}\right) \div (1 + g_{m1}r_{O1})$$

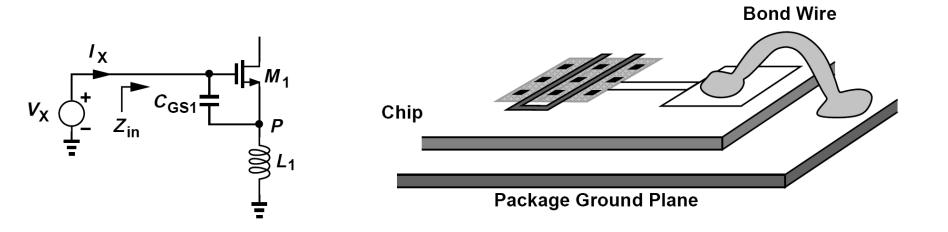
If $g_m r_O >> 1$, then:


$$R_{in} pprox rac{1}{g_{m1}} + rac{R_1}{g_{m1}r_{O1}g_{m2}r_{O2}} + rac{1}{g_{m1}r_{O1}g_{m2}} \, \mathbf{v_{in}} \, \mathbf{v_{in}} \, \mathbf{v_{in}} \, \mathbf{r_{in}} \, \mathbf{v_{in}} \,$$

It means R_{in}≈1/g_m and the input impedance is reduced significantly

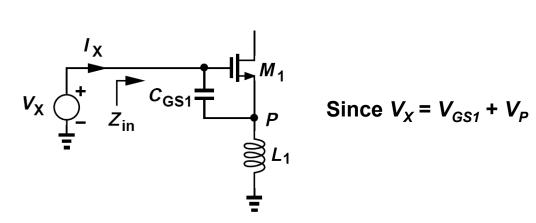
Cascode CG

Noise contribution of the cascode transistor:



frequency, then it manifests itself more.

5.3.4 CS with Degeneration


 The feedback through the gate-drain capacitance many be exploited to produce the required real part but it also leads to a negative resistance at lower frequencies.

CS with Degeneration

Creating a resistive term without additional noise:

$$V_P = \left(I_X + \frac{g_m I_X}{C_{GS1}s}\right) L_1 s$$

$$\frac{V_X}{I_X} = \frac{1}{C_{GS1}s} + L_1 s + \frac{g_m L_1}{C_{GS1}}$$

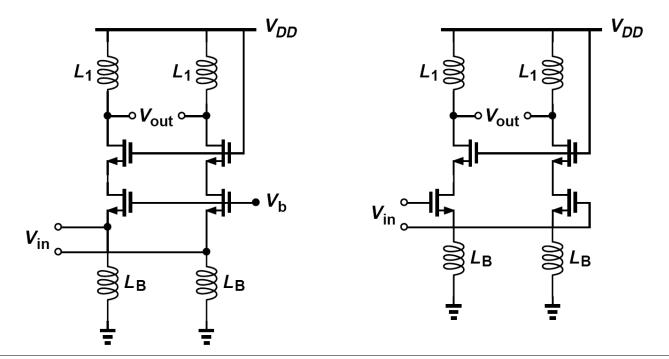
$$Z_{in} = sL_1 + \frac{1}{sC_{GS1}} + \frac{g_m}{C_{GS1}}L_1 \approx sL_1 + \frac{1}{sC_{GS1}} + \omega_T L_1$$

Real part which is considered as a resistive term $\sim 50 \Omega$

In practice, the degeneration inductor is often realized as a bond wire since the latter is inevitable in packaging and must be incorporated in the design.

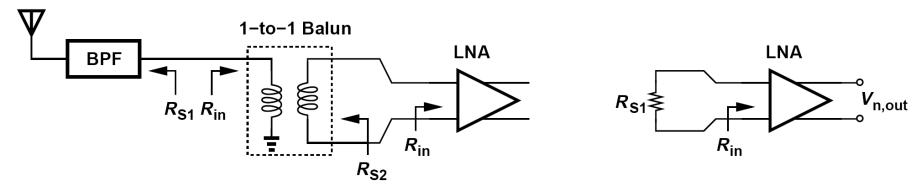
Example 5.13

 A 5-GHz LNA requires a value of 2 nH for L_G. Discuss what happens if L_G is integrated on the chip and its Q does not exceed 5.


With Q = 5, L_G suffers from a series resistance equal to L_G ω /Q =12.6 Ohm. This value is not much less than 50 Ohm, degrading the noise figure considerably. For this reason, L_G is typically placed off-chip.

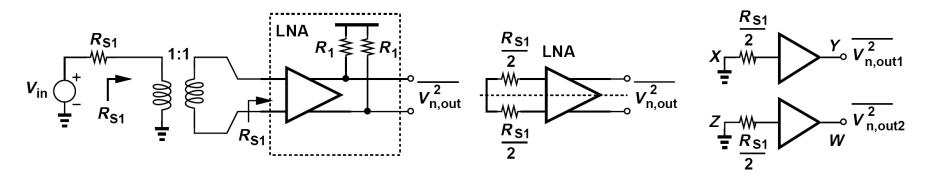
Lecture 7: inductors and other passives on chip.

5.6.1 Differential


 Differential LNAs can achieve high IP₂ because symmetric circuits produce no even-order distortion. In principle, any single-ended LNA can be converted to differential form (CG (left) and CS (right), both simplified).

Differential

 Since the antenna and the preselect filter are typically single-ended, a transformer (<u>balun</u>) must precede the LNA to perform single-ended to differential conversion.



- The transformer is called a "balun," an acronym for "balanced-to-unbalanced" conversion because it can also perform differential to single-ended conversion if its two ports are swapped.
- Figure above right is the setup for output noise calculation.

Differential CG LNA: Noise Figure

• Assuming it is designed such that the impedance seen between each input node and ground is equal to $R_{S1}/2$:

 From the symmetry of the circuit that we can compute the output noise of each half circuit and add the output powers:

$$\overline{V_{n,out}^2} = \overline{V_{n,out1}^2} + \overline{V_{n,out2}^2}$$

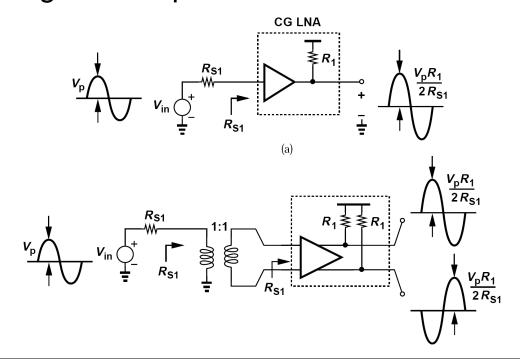
Differential

$$\overline{V_{n,out1}^2} = kT\gamma \frac{R_1^2}{R_{S1}/2} + 4kTR_1 + 4kT\frac{R_{S1}}{2} \left(\frac{R_1}{2R_{S1}}\right)^2.$$
 (5.149)

gives the NF for the differential circuit

$$NF = \frac{V_{n,out}^2}{A_v^2} \cdot \frac{1}{4kTR_{S1}}$$
 (5.150)

$$=1+\gamma+\frac{2R_{S1}}{R_1}.$$
 (5.151)


compare this with the NF for the single-ended circuit!

NF = 1 +
$$\frac{\gamma}{g_m R_S}$$
 + $\frac{R_S}{R_1} \left(1 + \frac{1}{g_m R_S} \right)^2$ (5.57)

$$= 1 + \gamma + 4\frac{R_S}{R_S}. \tag{5.58}$$

Comparison SE and Diff LNA

 Voltage gain of a differential CG LNA is twice that of the single ended version. On the other hand, the overall differential circuit contains two R₁ at its output, each contributing a noise power of 4kTR₁.

Summary

- The LNA is used for amplification of the received signal in RF receivers. It should have as little as possible noise.
- There is a trade-off between noise figure, gain, linearity, input impedance, and power consumption of LNAs.
- Different LNA topologies have been presented. The main idea is to reduce the noise figure while providing input match and good gain.

