TSKS01 Digital Communication Lecture 10

Bounds on good codes, convolutional codes

Emil Björnson

Department of Electrical Engineering (ISY) Division of Communication Systems

Last two times – Binary Linear Codes [n, k, d]

A vector space expressed in a ba	asis	the nullspace of a matrix				
$\mathcal{C} = \{ \overline{m} G \; \forall \overline{m} \in \mathbb{F}_2^k \}$			$\mathcal{C} = \{ \bar{c} \in \mathbb{F}_2^n : H\bar{c}^T = \bar{0} \}$			
Generator matrix $(k \times n)$, linearly independent rows.	HG^{T}	= 0	Parity check matrix $((n - k) \times n)$, linearly independent rows.			

Length: n, # columns in G or H

Dimension: k, # rows in G.

Minimum distance, d

Smallest Hamming distance between different codewords.

Smallest Hamming weight of non-zero codewords.

Smallest number of linearly dependent columns in *H*.

Outline of This Lecture

- Block codes
 - Benefits of error control codes
 - Soft decoding
 - Bounds on good codes
- Convolutional codes
 - Introduction

Error Probability: First comparison 1(2)

Uncoded communication over BSC with error probability p

$$k = n = 57, d = 1$$

 $P_e = \Pr\{\text{at least one error among } k \text{ bits}\} \\= 1 - \Pr\{\text{no errors among } k \text{ bits}\} \\= 1 - (1 - p)^k \approx kp$

Coded communication over the same BSC

Encoding: Hamming [63,57,3]

k = 57, n = 63, d = 3

 $P_e = \Pr\{\text{at least two errors among } n \text{ bits}\} \\= 1 - \Pr\{\text{zero or one errors among } n \text{ bits}\} \\= 1 - (1 - p)^n - np(1 - p)^{n-1} \approx n(n - 1)p^2/2$

Error Probability: First comparison 2(2)

Uncoded: $P_e = 1 - (1 - p)^k$

Coded: $P_e = 1 - (1 - p)^n - np(1 - p)^{n-1}$

TSKS01 Digital Communication - Lecture 9

Error Probability: Second comparison 1(2)

Unfair comparison if the total signal energy is different!

Uncoded and coded communication with same bit energy

Assume binary modulation and the same E_b in both cases:

• Use signal energy $(k/n)E_b$ for each codeword bit

Result: BSC with error probability
$$q = Q\left(\sqrt{\frac{k}{n}}Q^{-1}(p)\right)$$
 Note:
 $n \ge k \rightarrow q \ge p$

Uncoded: $P_e = 1 - (1 - p)^k$ Hamming [63,57,3] code: $P_e = 1 - (1 - q)^n - nq(1 - q)^{n-1}$

Error Probability: Second comparison 2(2)

Uncoded: $P_e = 1 - (1 - p)^k$

Coded: $P_e = 1 - (1 - q)^n - nq(1 - q)^{n-1}$

TSKS01 Digital Communication - Lecture 9

Soft Detection

• Recall: ML decision rules

ML decision rule: Set $\hat{a} = a_i$ if $f_{\bar{X}|A}(\bar{x}|a_k)$ is maximized for k = i.

Equivalent ML rule: Set $\hat{a} = a_i$ if $d(\bar{x}, \bar{s}_k)$ is minimized for k = i.

- These rules give mechanisms to make decisions
 - How certain are we that are our decisions are correct?
 - Hard decision: $\hat{a} = a_i$
 - **Soft decision**: $\hat{a} = a_i$ and likelihood of right decision

Soft Detection: Likelihood of Being Right

ML rule: Select $\hat{a} = a_1$ if $f_{\bar{X}|A}(\bar{x}|a_1) > f_{\bar{X}|A}(\bar{x}|a_0)$

- Uncertain if $f_{\bar{X}|A}(\bar{x}|a_1) \approx f_{\bar{X}|A}(\bar{x}|a_0)$
- Very certain if $f_{\bar{X}|A}(\bar{x}|a_1) \gg f_{\bar{X}|A}(\bar{x}|a_0)$

OMM

Soft Detection: Log-Likelihood Ratio

Measure of certainty:

Is
$$\frac{f_{\bar{X}|A}(\bar{x}|a_1)}{f_{\bar{X}|A}(\bar{x}|a_0)} \approx 1$$
 or $\frac{f_{\bar{X}|A}(\bar{x}|a_1)}{f_{\bar{X}|A}(\bar{x}|a_0)} \gg 1$?

Definition: Log-likelihood ratio (LLR)

$$LLR_{a_1,a_0}(\bar{x}) = \log\left(\frac{f_{\bar{X}|A}(\bar{x}|a_1)}{f_{\bar{X}|A}(\bar{x}|a_0)}\right)$$

- $LLR_{a_1,a_0}(\bar{x}) \approx 0$: Uncertain
- LLR_{a_1,a_0}(\bar{x}) \gg 0: Certain that $\hat{a} = a_1$
- LLR_{a_1,a_0}(\bar{x}) \ll 0: Certain that $\hat{a} = a_0$

Useful information to evaluate end result

Example: Log-Likelihood Ratio

Example: Soft and Hard Decoding of Hamming Code Over AWGN channel

What is a Good Block Code?

There only exist [n, k, d] codes for some n, k, and d

Natural questions:

- Given *n* and *k*, what is the largest minimal distance *d*?
- Given *n* and *d*, how many bits *k* can be sent?
- Given k and d, what is the smallest possible n?

Hard to answer exactly!

Mathematical bounds: Shows what does not exist

Computer simulation: Shows what does exit

The Hamming Bound:

Based on packing spheres in the binary Hamming space.

A linear [n, k, d] code:

Size of code: 2^k codewords.

Size of vector space: 2^n vectors.

Decoding sphere of radius $\lfloor (d-1)/2 \rfloor$ around each codeword.

Size of a sphere: $\sum_{i=0}^{\lfloor (d-1)/2 \rfloor} \binom{n}{i}$ Size of union of spheres: $2^k \sum_{i=1}^{\lfloor (d-1)/2 \rfloor} \binom{n}{i} \le 2^n$

2017-11-13

Perfect codes: Hamming codes

Definition: Perfect codes achieves Hamming bound

(All received signals can be corrected)

X

X

Х

Disjoint spheres

Repetition codes with odd n

Х

Х

Х

Х

The Singleton Bound

Based on shortening of codewords

A linear [n, k, d] code:

Remove the same d - 1 coefficients in each codeword

Result: A linear [n', k', d'] code with n' = n - d + 1, k' = k, $d' \ge 1$.

Size of resulting code: $2^{k'} = 2^k$ codewords.

Size of resulting vector space: $2^{n'} = 2^{n-d+1}$ vectors.

Distinct codewords: $2^{n'} \ge 2^{k'} \Rightarrow 2^{n-d+1} \ge 2^k$

Distinct codewords

Result: $n - d + 1 \ge k$

Singleton bound: $n - k \ge d - 1$ (Shows which [n, k, d] might be possible)

Equality achieved by:

Repetition codes

The Maximum Value of the Minimum Distance of Binary Linear Block Codes

Upper and Lower Bounds on the Maximum Value of the Minimum Distance of Binary Linear Block Codes

k	10	11	12	13	14	15	16	17	18	19	20
n											
30	11	10	9	8	8	8	7	6	6	6	5
31	12	11	10	9	8	8	8	7	6	6	6
32	12	12	10	10	8-9	8	8	8	6-7	6	6
33	12	12	11	10	9-10	8-9	8	8	7-8	6-7	6
34	12	12	12	10	10	9-10	8-9	8	8	7-8	6-7
35	12-13	12	12	11	10	10	9-10	8	8	8	7-8
36	13-14	12-13	12	12	11	10	10	8-9	8	8	8
37	14	13-14	12-13	12	12	10-11	10	9-10	8-9	8	8
38	14	14	13-14	12	12	11-12	10-11	10	9-10	8-9	8
39	15	14	14	12-13	12	12	11-12	10-11	10	9-10	8-9
40	16	14-15	14	12-14	12-13	12	12	11-12	10-11	10	9-10

Data fetched from http://www.win.tue.nl/~aeb/voorlincod.html on March 14, 2005. © 2005 Mikael Olofsson, mikael@isy.liu.se No difference Difference is 1 Difference is 2

Difference Between Upper and Lower Bounds for the Maximum Value of the Minimum Distance of Binary Linear Block Codes

OMM

Example: Rate with Hamming code

Potential drawbacks: Large delay? Complicated decoding?

TSKS01 Digital Communication - Lecture 10

Introduction: Convolutional Codes

- Encoder: FIR filter, convolution
- State diagram, trellis
- Decoding: Viterbi algorithm

Input: Semi-infinite sequence Output: Semi-infinite sequence In practice: Not infinitely long

Binary Sequences

Consider: $a = a_0, a_1, a_2, \dots$ for $a_i \in \mathbb{F}_2$

D-transform: Write sequence using delay operator *D*

•
$$A(D) = a_0 + a_1 D + a_2 D^2 + \cdots$$

Filtering of binary sequences:

$$A(D) \longrightarrow P(D) \longrightarrow X(D)$$

•
$$P(D) = p_0 + p_1 D + p_2 D^2 + \dots + p_m D^m$$

- Consider: X(D) = A(D)P(D)
- Time representation x = a * p:

$$x_m = \sum_{k=0}^m a_k p_{m-k} = \sum_{k=0}^m a_{m-k} p_k$$

Impulse Response

Impulse response:

- $a^{(0)} = 1,0, \dots$ gives outputs $c^{(0)} = 1,0,1,0, \dots$ and $c^{(1)} = 1,1,1,0, \dots$
- A(D) = 1 gives output $C^{(0)}(D) = 1 + D^2$ and $C^{(1)}(D) = 1 + D + D^2$
- Gather in a generator matrix:

$$G(D) = (1 + D^2, 1 + D + D^2)$$

Generating a Convolutional Code

- Dimensions:
 - k inputs to encoder
 - n outputs from encoder

Coding rate:
$$R = \frac{k}{n}$$

- Generator matrix G(D)
 - Dimension *k x n*
- Generating codewords
 - Input: $A(D) = a_0 + a_1 D + a_2 D^2 + \cdots$
 - Output: C(D) = A(D)G(D)

LINKÖPING UNIVERSITY

www.liu.se