Scientific Computing, 6 credits

Beräkningsmatematik, 6 hp

TANA21

Main field of study

Mathematics Applied Mathematics

Course level

First cycle

Course type

Programme course

Examiner

Fredrik Berntsson

Director of studies or equivalent

Nils-Hassan Quttineh

Education components

Preliminary scheduled hours: 48 h
Recommended self-study hours: 112 h
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering 3 (Autumn 2018) 1 3 Swedish Linköping, Valla C
6CMED Biomedical Engineering, M Sc in Engineering 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CMED Biomedical Engineering, M Sc in Engineering (Biomedical Imaging and Visualization) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CKEB Chemical Biology, M Sc in Engineering (Industrial Biotechnology and Production) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CKEB Chemical Biology, M Sc in Engineering (Protein Science and Technology) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CDDD Computer Science and Engineering, M Sc in Engineering 7 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CDDD Computer Science and Engineering, M Sc in Engineering 9 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CMJU Computer Science and Software Engineering, M Sc in Engineering 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CTBI Engineering Biology, M Sc in Engineering (Devices and Materials in Biomedicine) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CTBI Engineering Biology, M Sc in Engineering (Industrial biotechnology and production) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese (Specialization Mechanical Engineering) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French (Specialization Mechanical Engineering) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German (Specialization Mechanical Engineering) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese (Specialization Mechanical Engineering) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish (Specialization Mechanical Engineering) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIII Industrial Engineering and Management, M Sc in Engineering 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CIII Industrial Engineering and Management, M Sc in Engineering (Mechanical Engineering Specialization) 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6CITE Information Technology, M Sc in Engineering 7 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CITE Information Technology, M Sc in Engineering 9 (Autumn 2018) 1 3 Swedish Linköping, Valla C/E
6CMMM Mechanical Engineering, M Sc in Engineering 7 (Autumn 2018) 1 3 Swedish Linköping, Valla E
6KFYN Physics, Bachelor´s Programme 5 (Autumn 2018) 1 3 Swedish Linköping, Valla E

Main field of study

Mathematics, Applied Mathematics

Course level

First cycle

Advancement level

G1X

Course offered for

  • Applied Physics and Electrical Engineering, M Sc in Engineering
  • Physics, Bachelor´s Programme
  • Computer Science and Engineering, M Sc in Engineering
  • Industrial Engineering and Management - International, M Sc in Engineering
  • Industrial Engineering and Management, M Sc in Engineering
  • Information Technology, M Sc in Engineering
  • Chemical Biology, M Sc in Engineering
  • Biomedical Engineering, M Sc in Engineering
  • Computer Science and Software Engineering, M Sc in Engineering
  • Mechanical Engineering, M Sc in Engineering
  • Engineering Biology, M Sc in Engineering

Entry requirements

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.

Prerequisites

Basic courses in calculus, linear algebra and programming.

Intended learning outcomes

Computational mathematics is the art of developing and analysing numerical algorithms for solving mathematical problems in for example natural science and technology. After finishing the course the student should be able to

  • explain and separate fundamental terms and concepts in computationl mathematics
  • use a selection of numerical algorithms for solving given mathematical problems using a pocket calculator
  • estimate the accuracy of calculated results
  • use mathematical software

Course content

 

  • Error analysis: Round off, truncation, error propagation and cancellation.
  • Floting point numbers: Floating point systems, machine epsilon and round off.
  • Linear systems of equations: LU decomposition, pivoting, backward and forward substitution, condition and arithmetic complexity.
  • Interpolation and approximation: Newton's and Lagrange's methods, splines, Horner's scheme, least squares and overdetermined systems.
  • Differentiation and integration: Difference approximation, order of accuracy, the trapezoidal rule and Simpon's rule.
  • Ordinary differential equations: Runge Kutta methods, local and global truncation error, stability and convergence. Finite difference method.
  • Non-linear equations: The bisection method, Newton-Raphson's method, fixed point iteration, condition and order of convergence.

 

Teaching and working methods

The theory is presented in the lectures. The ability to explain and separate terms and concepts in computational mathematics, the ability to use numerical algorithms and the ability to estimate he accuracy of calculated results are trained during exercise time. The computer exercises investigate numerical properties of algorithms and software. 

A number of minor projects are also carried out, where acquired knowledge and skills are used.

Examination

LAB1Laboratory work2 creditsU, G
TEN1Written examination4 creditsU, 3, 4, 5
The first three course aims are examined with TEN1. The fourth is examined with LAB1.

Grades

Four-grade scale, LiU, U, 3, 4, 5

Other information

Supplementary courses: Numerical linear algebra, Computational Methods for Ordinary and Partial Differential Equations

Department

Matematiska institutionen

Director of Studies or equivalent

Nils-Hassan Quttineh

Examiner

Fredrik Berntsson

Course website and other links

http://courses.mai.liu.se/GU/TANA21

Education components

Preliminary scheduled hours: 48 h
Recommended self-study hours: 112 h

Course literature

Books

  • L Eldén, L Wittmeyer-Koch, (2001) Numeriska beräkningar - analys och illustrationer med MATLAB fjärde upplagan Studentlitteratur
    ISBN: 91-44-02007-4

Compendia

  • H Brandén, Formelsamling i Beräkningsmatematik, MAI, LiU
  • H Brandén, Övningar i Beräkningsmatematik, MAI, LiU
Code Name Scope Grading scale
LAB1 Laboratory work 2 credits U, G
TEN1 Written examination 4 credits U, 3, 4, 5
The first three course aims are examined with TEN1. The fourth is examined with LAB1.

Course syllabus

A syllabus has been established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Timetabling

Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. A central timetable is not drawn up for courses with fewer than five participants. Most project courses do not have a central timetable.

Interrupting a course

The vice-chancellor’s decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: www.lith.liu.se/for-studenter/kurskomplettering?l=sv. 

Cancelled courses

Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The board of studies is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. 

Regulations relating to examinations and examiners 

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Forms of examination

Examination

Written and oral examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies.

Principles for examination scheduling for courses that follow the study periods:

  • courses given in VT1 are examined for the first time in March, with re-examination in June and August
  • courses given in VT2 are examined for the first time in May, with re-examination in August and October
  • courses given in HT1 are examined for the first time in October, with re-examination in January and August
  • courses given in HT2 are examined for the first time in January, with re-examination at Easter and in August.

The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2). 

  • Examinations for courses that the board of studies has decided are to be held in alternate years are held only three times during the year in which the course is given.
  • Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.
  • If teaching is no longer given for a course, three examination occurrences are held during the immediately subsequent year, while examinations are at the same time held for any replacement course that is given, or alternatively in association with other re-examination opportunities. Furthermore, an examination is held on one further occasion during the next subsequent year, unless the board of studies determines otherwise.
  • If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the board or boards of studies determine together the scheduling and frequency of re-examination occasions.

Registration for examination

In order to take an examination, a student must register in advance at the Student Portal during the registration period, which opens 30 days before the date of the examination and closes 10 days before it. Candidates are informed of the location of the examination by email, four days in advance. Students who have not registered for an examination run the risk of being refused admittance to the examination, if space is not available.

Symbols used in the examination registration system:

  ** denotes that the examination is being given for the penultimate time.

  * denotes that the examination is being given for the last time.

Code of conduct for students during examinations

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682.

Retakes for higher grade

Students at the Institute of Technology at LiU have the right to retake written examinations and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN” and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

Retakes of other forms of examination

Regulations concerning retakes of other forms of examination than written examinations and computer-based examinations are given in the LiU regulations for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Plagiarism

For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations.

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat

In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=sv.

Grades

The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). Courses under the auspices of the faculty board of the Faculty of Science and Engineering (Institute of Technology) are to be given special attention in this regard.

  1. Grades U, 3, 4, 5 are to be awarded for courses that have written examinations.
  2. Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.

Examination components

  1. Grades U, 3, 4, 5 are to be awarded for written examinations (TEN).
  2. Grades Fail (U) and Pass (G) are to be used for undergraduate projects and other independent work.
  3. Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
  4. Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as other examination (ANN), tutorial group (BAS) or examination item (MOM).

The examination results for a student are reported at the relevant department.

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva. 

Books

L Eldén, L Wittmeyer-Koch, (2001) Numeriska beräkningar - analys och illustrationer med MATLAB fjärde upplagan Studentlitteratur

ISBN: 91-44-02007-4

Compendia

H Brandén, Formelsamling i Beräkningsmatematik, MAI, LiU
H Brandén, Övningar i Beräkningsmatematik, MAI, LiU

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1. DISCIPLINARY KNOWLEDGE AND REASONING
1.1 Knowledge of underlying mathematics and science (G1X level)
X
X
TEN1

                            
1.2 Fundamental engineering knowledge (G1X level)
X

                            
1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level)

                            
1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level)

                            
1.5 Insight into current research and development work

                            
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
2.1 Analytical reasoning and problem solving
X
X
LAB1

                            
2.2 Experimentation, investigation, and knowledge discovery
X
X
LAB1

                            
2.3 System thinking

                            
2.4 Attitudes, thought, and learning
X

                            
2.5 Ethics, equity, and other responsibilities

                            
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
3.1 Teamwork
X

                            
3.2 Communications
X

                            
3.3 Communication in foreign languages

                            
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT
4.1 External, societal, and environmental context

                            
4.2 Enterprise and business context

                            
4.3 Conceiving, system engineering and management

                            
4.4 Designing

                            
4.5 Implementing

                            
4.6 Operating

                            
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS
5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development

                            
5.2 Economic conditions for knowledge development

                            
5.3 Identification of needs, structuring and planning of research or development projects

                            
5.4 Execution of research or development projects

                            
5.5 Presentation and evaluation of research or development projects

                            

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.