Calculus in One and Several Variables, 6 credits
En- och flervariabelanalys, 6 hp
TATA91
Main field of study
Mathematics Applied MathematicsCourse level
First cycleCourse type
Programme courseExaminer
Jesper ThorénDirector of studies or equivalent
Mikael LangerEducation components
Preliminary scheduled hours: 36 hRecommended self-study hours: 124 h
Course offered for | Semester | Period | Timetable module | Language | Campus | ECV | |
---|---|---|---|---|---|---|---|
6CMJU | Computer Science and Software Engineering, Master of Science in Engineering | 4 (Spring 2024) | 2 | 4 | Swedish | Linköping, Valla | C |
6CITE | Information Technology, Master of Science in Engineering | 4 (Spring 2024) | 2 | 4 | Swedish | Linköping, Valla | C |
Main field of study
Mathematics, Applied MathematicsCourse level
First cycleAdvancement level
G1XCourse offered for
- Master of Science in Information Technology
- Master of Science in Computer Science and Software Engineering
Prerequisites
Calculus in one variable 1, Linear AlgebraIntended learning outcomes
Gain familiarity with mathematical concepts, reasoning and relationships in calculus in one and several variables, and gain the calculation and problem solving skills needed for further studies. After completing this course you should be able to
-
cite, explain and use the definitions and theorems of the course’s key concepts
-
solve problems and verify that results are correct or resonable
Course content
Taylor's and Maclaurin's formulae: Maclaurin expansions of the elementary functions, the Ordo form of the remainder term with applications, e.g. computations of limits. Ordinary differential equations: first order linear and separable equations, higher order linear equations with constant coefficients. Improper integrals: investigation of convergence, absolute convergence. Numerical series: investigation of convergence, absolute convergence, Leibniz criterion. The space R ^ n: basic topological concepts, functions from R ^ n to R ^ p, function surfaces,level surfaces and level curves. Differential calculus: partial derivatives, the chain rule, partial differential equations, gradient, normal, tangent, tangent plane and directional
Teaching and working methods
The course consists of lectures and classes.
For the MSc programme in Information Technology, the course applies problem-based learning.
Examination
TEN1 | Written exam | 6 credits | U, 3, 4, 5 |
Grades
Four-grade scale, LiU, U, 3, 4, 5Other information
About teaching and examination language
The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows:
- If teaching language is “Swedish”, the course as a whole could be given in Swedish, or partly in English. Examination language is Swedish, but parts of the examination can be in English.
- If teaching language is “English”, the course as a whole is taught in English. Examination language is English.
- If teaching language is “Swedish/English”, the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English depending on teaching language.
Other
The course is conducted in such a way that there are equal opportunities with regard to sex, transgender identity or expression, ethnicity, religion or other belief, disability, sexual orientation and age.
The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point.
The course is campus-based at the location specified for the course, unless otherwise stated under “Teaching and working methods”. Please note, in a campus-based course occasional remote sessions could be included.
Department
Matematiska institutionenCourse literature
Books
- Forsling, G. och Neymark, N., (2011) Matematisk analys, en variabel Liber
- M. Neymark, (2016) Matematisk analys, flera variabler.
Code | Name | Scope | Grading scale |
---|---|---|---|
TEN1 | Written exam | 6 credits | U, 3, 4, 5 |
Books
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (courses on G1X-level) |
X
|
X
|
X
|
TEN1
|
||
1.2 Fundamental engineering knowledge (courses on G1X-level) |
|
|
|
|||
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level) |
|
|
|
|||
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
|
X
|
X
|
TEN1
|
||
2.2 Experimentation, investigation, and knowledge discovery |
|
|
|
|||
2.3 System thinking |
|
|
|
|||
2.4 Attitudes, thought, and learning |
|
|
|
|||
2.5 Ethics, equity, and other responsibilities |
|
|
|
|||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
|
|
|
|||
3.2 Communications |
|
|
|
|||
3.3 Communication in foreign languages |
|
|
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 Societal conditions, including economically, socially and ecologically sustainable development |
|
|
|
|||
4.2 Enterprise and business context |
|
|
|
|||
4.3 Conceiving, system engineering and management |
|
|
|
|||
4.4 Designing |
|
|
|
|||
4.5 Implementing |
|
|
|
|||
4.6 Operating |
|
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects |
|
|
|
|||
5.2 Economic conditions for research and development projects |
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
|
|
|
|||
5.4 Execution of research or development projects |
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.