Computer Networks and Distributed Systems, 8 credits
Datornät och distribuerade system, 8 hp
TDTS04
Main field of study
Computer Science and Engineering ProgrammingCourse level
First cycleCourse type
Programme courseExaminer
Andrei GurtovDirector of studies or equivalent
Patrick LambrixEducation components
Preliminary scheduled hours: 54 hRecommended self-study hours: 159 h
Available for exchange students
YesMain field of study
Computer Science and Engineering, ProgrammingCourse level
First cycleAdvancement level
G2XCourse offered for
- Computer Engineering, B Sc in Engineering
- Industrial Engineering and Management - International, M Sc in Engineering
- Industrial Engineering and Management, M Sc in Engineering
- Programming, Bachelor's Programme
Entry requirements
Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.
Prerequisites
Knowledge of C, C++ or Java are required in order to be able to manage the laborations in the course. The student is also assumed to know how to construct and test programs in a Unix/Solaris environment.Intended learning outcomes
Computer networks are playing an increasingly important role in the society. It is predicted that there will be 50 billion devices connected to the Internet by 2020. With an enormous increase in the number of wired and wireless devices connected through the Internet, as well as improved network bandwidth and computer capabilities, we are moving towards a society in which users expect to access anything they want, whenever and wherever they are. To enable this trend and all the emerging services provided over the Internet (e.g., social networks, video streaming, and the Internet of things) it is therefore critical for today's computer science students to have a good understanding for computer networks.
TDTS04 is a basic course in computer networks and distributed systems. The course covers the basics for how a network and its applications operate; what a protocol is; how they work, and what the most important applications of the Internet are. It also covers the fundamentals of distributed systems, and some of the design tradeoffs that these systems commonly must take into consideration. In the labs you will learn more about the mechanisms in some important and fundamental Internet protocols and some basic programming of distributed systems. The final exam will test your understanding and knowledge of the subject. After the course, you are expected to be able to:
- Explain, describe, and analyze a typical network architecture, including the importance of network layers and encapsulation
- Explain the different basic types of protocols, communication channels, and network types
- Describe and analyze the most common application architectures in the Internet, how the most important application-layer protocols work and the service they provide
- Analyze and explain important design considerations at the transport layer, including describing how TCP's flow control and congestion control works, and how reliable data transfer is implemented in TCP
- Motivate and explain how routing and forwarding is implemented on the Internet, including describing how IP addressing and fragmentation works
- Describe and explain different link-layer technologies and how they work
- Define what a distributed system is and its most important goals
- Explain the relationship between architectures, processes and communication
- Exemplify different types of transparency, scaling techniques
- Analyze and explain some of the fundamental differences in different system architectures
- Describe and explain how to achieve synchronization, consistency and replication
- Implement, motivate, and explain the design of various types if distributed system architectures, including object-based distributed systems (e.g., using Corba and Java RMI) and Web-based distributed systems (including how a proxy cache works)
Course content
Basics for distributed systems, definitions, transparency, scaling, architectures, execution techniques for remote procedure calls (rpc and port mapping), and socket-based communication between processes. Pitfalls when implementing distributed systems. Object-based distributed systems (Corba and Java RMI) and web-based distributed systems (HTTP and web services). Communication and process models, naming, synhronization, consistency, caching, replication, and fault tolerance. UTC, NTP. Lamport and vector clocks. Mutual exclusion. Application architectures: client-server (centralized, decentralized/p2p, multi-tiered) and hybrid, exemplified with HTTP, e-mail, file transfer, DNS, Bittorrent, and Skype. CDN and Akamai. Protocol terminology. Protocol layer concept. Reference models for network architectures. System architectures. Application areas for computer networks and distributed systems and examples of commercial network services. Network types, their characteristics and components (router, switch, hub, repeater). Protocol mechanisms and channels. Access network techniques. Different types of MAC protocols. The collision domain concept. The sliding window protocol. Error detection. Local area networks (IEEE 802.3). Wireless networks (Bluetooth, WiFi, WiMax). Extending LANs. Internet and standardization. The TCP/IP protocol family. Distance vector and link-state routing. ICMP. ARP. NAT. DHCP. Naming, addressing and routing in the Internet. TCP's retransmission timer, flow control and congestion control. Reliable data delivery in TCP. Three-way handshake. Network performance issues. Internet applications (the domain name system, e-mail, file transfer, the web, and network mangement). IP telephony. P2P networks. The DHT data structure. Internet history. Internet design principles. Lan background. Trends.
Teaching and working methods
The course consists of lectures and laborations.
Examination
LAB1 | Laboratory work | 3 credits | U, G |
TEN1 | Written examination | 5 credits | U, 3, 4, 5 |
Grades
Four-grade scale, LiU, U, 3, 4, 5Other information
Supplementary courses: Advanced Networking; System installation. |
Department
Institutionen för datavetenskapDirector of Studies or equivalent
Patrick LambrixExaminer
Andrei GurtovCourse website and other links
http://www.ida.liu.se/~TDTS04/Education components
Preliminary scheduled hours: 54 hRecommended self-study hours: 159 h
Course literature
Huvudbok: Kurose, J. F. & Ross, K. W. (2012), Computer networking: a top-down approach. Sixth Edition. Pearson.Code | Name | Scope | Grading scale |
---|---|---|---|
LAB1 | Laboratory work | 3 credits | U, G |
TEN1 | Written examination | 5 credits | U, 3, 4, 5 |
Regulations (apply to LiU in its entirety)
The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.
LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (courses on G1X-level) |
|
|
|
|||
1.2 Fundamental engineering knowledge (courses on G1X-level) |
X
|
X
|
X
|
TEN1
|
||
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level) |
|
X
|
|
LAB1
|
||
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
X
|
X
|
|
LAB1
TEN1
|
||
2.2 Experimentation, investigation, and knowledge discovery |
|
X
|
X
|
LAB1
TEN1
|
||
2.3 System thinking |
|
X
|
X
|
LAB1
TEN1
|
||
2.4 Attitudes, thought, and learning |
|
X
|
X
|
LAB1
|
||
2.5 Ethics, equity, and other responsibilities |
|
|
|
|||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
|
|
X
|
|||
3.2 Communications |
|
|
X
|
|||
3.3 Communication in foreign languages |
|
|
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 Societal conditions, including economically, socially and ecologically sustainable development |
X
|
|
|
|||
4.2 Enterprise and business context |
|
|
|
|||
4.3 Conceiving, system engineering and management |
|
X
|
X
|
LAB1
|
||
4.4 Designing |
|
X
|
|
LAB1
|
||
4.5 Implementing |
X
|
X
|
|
LAB1
|
||
4.6 Operating |
|
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects |
|
|
|
|||
5.2 Economic conditions for research and development projects |
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
|
|
|
|||
5.4 Execution of research or development projects |
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.