Integrated Product Service Engineering, 6 credits

Integrerad produkt- och tjänsteutveckling, 6 hp

TKMJ32

Main field of study

Energy and Environmental Engineering Industrial Engineering and Management Product Development Mechanical Engineering

Course level

Second cycle

Course type

Programme course

Examiner

Johannes Matschewsky

Director of studies or equivalent

Carina Sundberg

Education components

Preliminary scheduled hours: 36 h
Recommended self-study hours: 124 h

Available for exchange students

Yes
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV
6CDPU Design and Product Development, Master of Science in Engineering 7 (Autumn 2022) 2 3 English Linköping, Valla E
6CDPU Design and Product Development, Master of Science in Engineering (Product Development - Design Engineering) 7 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, Chinese 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, Chinese (Specialization Mechanical Engineering) 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, French 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, French (Specialization Mechanical Engineering) 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, German 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, German (Specialization Mechanical Engineering) 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, Japanese 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, Japanese (Specialization Mechanical Engineering) 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, Spanish 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, Master of Science in Engineering, Spanish (Specialization Mechanical Engineering) 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIII Industrial Engineering and Management, Master of Science in Engineering 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CIII Industrial Engineering and Management, Master of Science in Engineering (Mechanical Engineering Specialization) 9 (Autumn 2022) 2 3 English Linköping, Valla E
6MIND Industrial Engineering and Management, Master's Programme (Innovation Management) 3 (Autumn 2022) 2 3 English Linköping, Valla E
6MIND Industrial Engineering and Management, Master's Programme (Operations Management) 3 (Autumn 2022) 2 3 English Linköping, Valla E
6MIND Industrial Engineering and Management, Master's Programme (Quality Management) 3 (Autumn 2022) 2 3 English Linköping, Valla E
6CMMM Mechanical Engineering, Master of Science in Engineering 9 (Autumn 2022) 2 3 English Linköping, Valla E
6CMMM Mechanical Engineering, Master of Science in Engineering (Energy and Environmental Engineering) 9 (Autumn 2022) 2 3 English Linköping, Valla E
6MSUS Sustainability Engineering and Management, Master's Programme 3 (Autumn 2022) 2 3 English Linköping, Valla E

Main field of study

Energy and Environmental Engineering, Industrial Engineering and Management, Product Development, Mechanical Engineering

Course level

Second cycle

Advancement level

A1N

Course offered for

  • Master of Science in Industrial Engineering and Management
  • Master of Science in Mechanical Engineering
  • Master of Science in Industrial Engineering and Management - International
  • Master of Science in Design and Product Development
  • Master's Programme in Sustainability Engineering and Management
  • Master's Programme in Industrial Engineering and Management

Prerequisites

General technical knowledge from three years of study at a technical university. Especially, knowledge about product development in general. For EM or I students, this means having passed TKMJ39 (Resource Efficient Products and Production).

 

Intended learning outcomes

The course gives a student deep understanding about the concept of Integrated Product Service Engineering (IPSE) and Integrated Product Service Offerings (IPSO). Upon successful completion of the course, the student should be able to do the followings in English:

  • Describe and explain pros and cons from a business and environmental perspective with IPSE and different IPSO examples.
  • Describe and use examples of IPSE methodologies (including e.g. Design Structure Matrix for Services, FMEA for PSS, PSS design method based on QFD (SPIPS)) that can be used to achieve IPSO.
  • Describe and explain how IPSO influence a business model, a network of companies (including a customer), risk and contracts.
  • Describe and explain how IPSE influence a company’s functions, e.g. product development and service development.
  • Describe and explain how some Swedish companies (incl. SMEs) work on IPSE/IPSO as an example.
  • Apply some of the course’s contents in designing/developing a hypothetical IPSO by analysing and modifying an existing or prospective offering.

 

Course content

Review of overall concepts such as IPSE, IPSO, Functional Sales, Functional Product, Service Engineering, and Product/Service System (PSS). How IPSE is related to areas such as Ecodesign. Introduction to IPSE methodologies, and contract issues with IPSO. Mandatory group project work where the students, given an existing or prospective offering, apply some of the theory and methodologies from the course to analyze and develop improvement proposals.

Teaching and working methods

Instruction is given in the form of lectures and a project work. Course grades are determined based on the written exam and the written report (and possibly an oral presentation) by each project group.

Examination

PRA1Approved project assignments and approved seminars3 creditsU, G
TEN1Written examination3 creditsU, 3, 4, 5

Grades

Four-grade scale, LiU, U, 3, 4, 5

Other information

About teaching and examination language

The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows: 

  • If teaching language is “Swedish”, the course as a whole could be given in Swedish, or partly in English. Examination language is Swedish, but parts of the examination can be in English.
  • If teaching language is “English”, the course as a whole is taught in English. Examination language is English.
  • If teaching language is “Swedish/English”, the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English depending on teaching language.

Other

The course is conducted in a manner where both men's and women's experience and knowledge are made visible and developed. 

The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point.  

If special circumstances prevail, the vice-chancellor may in a special decision specify the preconditions for temporary deviations from this course syllabus, and delegate the right to take such decisions.

Department

Institutionen för ekonomisk och industriell utveckling

Course literature

Compendium “IPSE 2013”, IEI / Environmental Technology and Management
Code Name Scope Grading scale
PRA1 Approved project assignments and approved seminars 3 credits U, G
TEN1 Written examination 3 credits U, 3, 4, 5

Course syllabus

A syllabus must be established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Timetabling

Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. 

Interruption in and deregistration from a course

The LiU decision, Guidelines concerning confirmation of participation in education (Dnr LiU-2020-02256), states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from or interrupting a course is carried out using a web-based form Forms

Cancelled courses and changes to the course syllabus

Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The Dean is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. 

Guidelines relating to examinations and examiners 

For details, see Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, Dnr LiU-2020-04501  (http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).

An examiner must be employed as a teacher at LiU according to the LiU Regulations for Appointments, Dnr LiU-2021-01204 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622784). For courses in second-cycle, the following teachers can be appointed as examiner: Professor (including Adjunct and Visiting Professor), Associate Professor (including Adjunct), Senior Lecturer (including Adjunct and Visiting Senior Lecturer), Research Fellow, or Postdoc. For courses in first-cycle, Assistant Lecturer (including Adjunct and Visiting Assistant Lecturer) can also be appointed as examiner in addition to those listed for second-cycle courses. In exceptional cases, a Part-time Lecturer can also be appointed as an examiner at both first- and second cycle, see Delegation of authority for the Board of Faculty of Science and Engineering.

Forms of examination

Principles for examination

Written and oral examinations and digital and computer-based examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the faculty programme board.

Principles for examination scheduling for courses that follow the study periods:

  • courses given in VT1 are examined for the first time in March, with re-examination in June and August
  • courses given in VT2 are examined for the first time in May, with re-examination in August and January
  • courses given in HT1 are examined for the first time in October, with re-examination in January and August
  • courses given in HT2 are examined for the first time in January, with re-examination in March and in August.

The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2). 

Examinations for courses that the faculty programme board has decided are to be held in alternate years are held three times during the school year in which the course is given according to the principles stated above.

Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.

When a course, or a written examination (TEN, DIT, DAT), is given for the last time, the regular examination and two re-examinations will be offered. Thereafter, examinations are phased out by offering three examinations during the following academic year at the same times as the examinations in any substitute course. If there is no substitute course, three examinations will be offered during re-examination periods during the following academic year. Other examination times are decided by the faculty programme board. In all cases above, the examination is also offered one more time during the academic year after the following, unless the faculty programme board decides otherwise. In total, 6 re-examinations are offered, of which 2 are regular re-examinations. In the examination registration system, the examinations given for the penultimate time and the last time are denoted. 

If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the faculty programme board or boards determine together the scheduling and frequency of re-examination occasions.

Retakes of other forms of examination

Regulations concerning retakes of other forms of examination than written examinations and digital and computer-based examinations are given in the LiU guidelines for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592.

Course closure

For Decision on Routines for Administration of the Discontinuation of Educational Programs, Freestanding Courses and Courses in Programs, see DNR LiU-2021-04782. After a decision on closure and after the end of the discontinuation period, the students are referred to a replacement course (or similar) according to information in the course syllabus or programme syllabus. If a student has passed some part/parts of a closed program course but not all, and there is an at least partially replacing course, an assessment of crediting can be made. Any crediting of course components is made by the examiner.

Registration for examination

In order to take an written, digital or computer-based examination, registration in advance is mandatory, see decision in the university’s rule book https://styrdokument.liu.se/Regelsamling/VisaBeslut/622682. An unregistered student can thus not be offered a place. The registration is done at the Student Portal or in the LiU-app during the registration period. The registration period opens 30 days before the date of the examination and closes 10 days before the date of the examination. Candidates are informed of the location of the examination by email, four days in advance. 

Code of conduct for students during examinations

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682.

Retakes for higher grade

Students at the Institute of Technology at LiU have the right to retake written examinations and digital and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN”, “DIT” and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

A retake is not possible on courses that are included in an issued degree diploma. 

Grades

The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). 

  • Grades U, 3, 4, 5 are to be awarded for courses that have written or digital examinations.
  • Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.
  • Grades Fail (U) and Pass (G) are to be used for degree projects and other independent work.

Examination components

The following examination components and associated module codes are used at the Faculty of Science and Engineering:

  • Grades U, 3, 4, 5 are to be awarded for written examinations (TEN) and digital examinations (DIT).
  • Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), digital preparatory written examination (DIK), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
  • Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as tutorial group (BAS) or examination item (MOM).
  • Grades Fail (U) and Pass (G) are to be used for the examination components Opposition (OPPO) and Attendance at thesis presentation (AUSK) (i.e. part of the degree project).

In general, the following applies:

  • Mandatory course components must be scored and given a module code.
  • Examination components that are not scored, cannot be mandatory. Hence, it is voluntary to participate in these examinations, and the voluntariness must be clearly stated. Additionally, if there are any associated conditions to the examination component, these must be clearly stated as well.
  • For courses with more than one examination component with grades U,3,4,5, it shall be clearly stated how the final grade is weighted.

For mandatory components, the following applies (in accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592): 

  • If special circumstances prevail, and if it is possible with consideration of the nature of the compulsory component, the examiner may decide to replace the compulsory component with another equivalent component.

For possibilities to alternative forms of examinations, the following applies (in accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592): 

  • If the LiU coordinator for students with disabilities has granted a student the right to an adapted examination for a written examination in an examination hall, the student has the right to it.
  • If the coordinator has recommended for the student an adapted examination or alternative form of examination, the examiner may grant this if the examiner assesses that it is possible, based on consideration of the course objectives.
  • An examiner may also decide that an adapted examination or alternative form of examination if the examiner assessed that special circumstances prevail, and the examiner assesses that it is possible while maintaing the objectives of the course.

Reporting of examination results

The examination results for a student are reported at the relevant department.

Plagiarism

For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations, such as degree projects, project reports, etc. (this is sometimes known as “self-plagiarism”).

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat

In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at Cheating, deception and plagiarism 

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva

Compendium “IPSE 2013”, IEI / Environmental Technology and Management

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1. DISCIPLINARY KNOWLEDGE AND REASONING
1.1 Knowledge of underlying mathematics and science (courses on G1X-level)
X
PRA1
Knowledge in maths and natural sciences is applied in the project through calculations and use of tools and methods.
1.2 Fundamental engineering knowledge (courses on G1X-level)
X
X
PRA1
Broad knowledge in engineering design and related topics is deepened in the course and applied in the course project.
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level)
X
X
PRA1
Deepened knowledge in engineering design and related topics is deepened in the course and applied in the course project.
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level)
X
X
PRA1
TEN1
In-depth and specialized knowledge in engineering design and related topics is deepened in the course and applied in the course project and tested in the final exam. This builds on knowledge as detailed in 1.3, 1.2, and 1.1.
1.5 Insight into current research and development work
X
X
X
PRA1
State-of-the-art research is the basis of the knowledge introduced and build in the scope of the course in terms of understanding the ongoing development in practice as well as applying the new knowledge during the project and showing a full understanding in the exam.
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
2.1 Analytical reasoning and problem solving
X
X
PRA1
Analytical thinking and problem solving are mainly taught and applied in the scope of the project.
2.2 Experimentation, investigation, and knowledge discovery
X
X
PRA1
Experimenting and trialing methods and tools to design and evaluate integrated product-service offerings is a central part of the course project.
2.3 System thinking
X
X
PRA1
TEN1
Systems thinking is critical to design integrated product-service offerings. Prior knowledge gained in earlier courses is used and applied with respect to this particular topic, particularly in the scope of the project. Having this understanding is a critical skill needed to pass the final exam.
2.4 Attitudes, thought, and learning
X
TEN1

                            
2.5 Ethics, equity, and other responsibilities
X
PRA1
Approaching one-another and collaborating without prejudice and based on equality is critical to succeed in the course project. 
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
3.1 Teamwork
X
X
PRA1
Group work in the scope of the course project is critical to succeed in this course. In case challenges arise, students support one another towards solving these is a self-reliant fashion. Developing these problem-solving skills is a critical aspect of this course.
3.2 Communications
X
PRA1
Students need to organize themselves in the scope of the course project 
3.3 Communication in foreign languages
X
PRA1
TEN1
The course is exclusively taught in English, which applies also to the project and reports written. Full command of English is required to succeed in this course.
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT
4.1 Societal conditions, including economically, socially and ecologically sustainable development
X
X
X
PRA1
The course has a strong focus on sustainable development and the shift towards a circular economy and introduces, deepens and applies knowledge in that context.
4.2 Enterprise and business context
X
PRA1
By introducing current and highly-relevant insight from industry, the context of companies confronted with the shift towards lifecycle focused offerings in the context of a circular economy is discussed and applied in the scope of the project.
4.3 Conceiving, system engineering and management
X
X
X
PRA1
TEN1
This aspect is central to the course and therefore, product and systems design and related skills and knowledge are introduced, taught and applied in-depth in this course.
4.4 Designing
X
X
X
PRA1
This aspect is central to the course and therefore, product and systems design and related skills and knowledge are introduced, taught and applied in-depth in this course. Here, this mainly applies to the project-part of the course.
4.5 Implementing
X
PRA1
Students are encouraged to develop (digital) prototypes for their newly-designed product-service offerings. Thus, full real-world realization is out of scope, but digital prototypes have been continuously developed as a result of the course in previous years.
4.6 Operating

                            
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects

                            
5.2 Economic conditions for research and development projects

                            
5.3 Identification of needs, structuring and planning of research or development projects

                            
5.4 Execution of research or development projects

                            
5.5 Presentation and evaluation of research or development projects

                            

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.