Engineering Materials - Deformation and Fracture, 6 credits

Konstruktionsmaterial - deformationer och brott, 6 hp

TMKM90

Main field of study

Mechanical Engineering

Course level

Second cycle

Course type

Programme course

Examiner

Ru Lin Peng

Director of studies or equivalent

Mikael Segersäll

Education components

Preliminary scheduled hours: 58 h
Recommended self-study hours: 102 h

Available for exchange students

Yes
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese (Specialization Mechanical Engineering) 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French (Specialization Mechanical Engineering) 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German (Specialization Mechanical Engineering) 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese (Specialization Mechanical Engineering) 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish (Specialization Mechanical Engineering) 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIII Industrial Engineering and Management, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CIII Industrial Engineering and Management, M Sc in Engineering (Specialization Mechanical Engineering) 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CMMM Mechanical Engineering, M Sc in Engineering 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CMMM Mechanical Engineering, M Sc in Engineering (Aeronautical Engineering) 9 (Autumn 2017) 1 4 Swedish/English Linköping, Valla E
6CMMM Mechanical Engineering, M Sc in Engineering (Engineering materials) 7 (Autumn 2017) 1 4 Swedish/English Linköping, Valla C
6MMEC Mechanical Engineering, Master's programme 3 (Autumn 2017) 1 4 Swedish/English Linköping, Valla C

Main field of study

Mechanical Engineering

Course level

Second cycle

Advancement level

A1X

Course offered for

  • Industrial Engineering and Management - International, M Sc in Engineering
  • Industrial Engineering and Management, M Sc in Engineering
  • Mechanical Engineering, M Sc in Engineering
  • Applied Physics and Electrical Engineering - International, M Sc in Engineering
  • Applied Physics and Electrical Engineering, M Sc in Engineering
  • Mechanical Engineering, Master's programme

Entry requirements

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.

Prerequisites

Engineering Materials, Solid Mechanics

Intended learning outcomes

The objective of this course is to develop a broad understanding of deformation and fracture phenomena in metallic materials in the context of material processing and in-service performance. Mechanical behavior is approached through integration of the materials microstructure and continuum mechanics principles over a range of length scales. The course shall give knowledge about modern techniques for materials characterization and develop skills to evaluate the results from tests of the materials mechanical properties.
After completion of the course the students should be able to:

  1. Explain and describe basic concepts, relationships and models for deformation and failure mechanisms in metallic structural materials, (e.g. dislocation theory, creep mechanisms, basic fracture mechanics and fatigue theory)
  2. Apply the relationship between the materials microstructure and the mechanical properties, such as principles of strengthening mechanisms and micro-structural effects on fracture toughness, creep and fatigue 3. properties. 3
  3. Analyze and evaluate mechanical testing from an engineering perspective, especially creep testing, fatigue testing and fracture toughness testing. 4li>Analyze and explain real failures from a engineering materials perspective.
  4. Make assessments and generalize about the validity of different material models used in the strength and service life calculations of real components.

Course content

Elastic and plastic response of metallic engineering materials, strengthening mechanisms, time dependent deformation and creep mechanisms, fracture mechanics, fracture toughness, environmental impact on fracture and failures, Crack initiation and crack propagation.

Teaching and working methods

The course contains lectures, tutorials, home work assignments and a mandatory laboratory exercise. The lectures focus on the theoretical aspects connected to learning objectives 1 and 2. The main focus for the tutorials is to strengthen the students ability to independently solve problems associated to learning objectives 2 and 3. The home work assignment and the laboratory exercise will additional training in analyzing and evaluate the course the content with respect to learning objectives 3, 4 and 5.

Examination

LAB1Laboratory Work1.5 creditsU, G
TEN1Written Examination4.5 creditsU, 3, 4, 5

Grades

Four-grade scale, LiU, U, 3, 4, 5

Other information

Supplementary courses: New materials, Light weight materials, Experimental evaluation of engineering materials

Department

Institutionen för ekonomisk och industriell utveckling

Director of Studies or equivalent

Mikael Segersäll

Examiner

Ru Lin Peng

Course website and other links

http://www.iei.liu.se/kmt/education/deformation-fracture?l=en

Education components

Preliminary scheduled hours: 58 h
Recommended self-study hours: 102 h

Course literature

Additional literature

Books

  • Hertzberg, Deformation and fracture mechanics of engineering materials

Compendia

Code Name Scope Grading scale
LAB1 Laboratory Work 1.5 credits U, G
TEN1 Written Examination 4.5 credits U, 3, 4, 5

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva. 

Additional literature

Books

Hertzberg, Deformation and fracture mechanics of engineering materials

Compendia

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1. DISCIPLINARY KNOWLEDGE AND REASONING
1.1 Knowledge of underlying mathematics and science (G1X level)
X
X
X
TEN1

                            
1.2 Fundamental engineering knowledge (G1X level)
X
X
X
TEN1

                            
1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level)
X
X
X
TEN1

                            
1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level)

                            
1.5 Insight into current research and development work

                            
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
2.1 Analytical reasoning and problem solving
TEN1

                            
2.2 Experimentation, investigation, and knowledge discovery
LAB1

                            
2.3 System thinking

                            
2.4 Attitudes, thought, and learning
X
X
X
LAB1

                            
2.5 Ethics, equity, and other responsibilities
X
X
LAB1

                            
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
3.1 Teamwork
X
X
X
LAB1

                            
3.2 Communications
X
X
X
LAB1

                            
3.3 Communication in foreign languages
X
X
X
LAB1

                            
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT
4.1 External, societal, and environmental context
X
X
X
LAB1

                            
4.2 Enterprise and business context

                            
4.3 Conceiving, system engineering and management

                            
4.4 Designing

                            
4.5 Implementing

                            
4.6 Operating

                            
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS
5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development
X
X
X
LAB1

                            
5.2 Economic conditions for knowledge development
X
X
X
LAB1

                            
5.3 Identification of needs, structuring and planning of research or development projects
X
X
X
LAB1

                            
5.4 Execution of research or development projects
X
X
X
LAB1

                            
5.5 Presentation and evaluation of research or development projects
X
X
X
LAB1

                            

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.