Internet of Things, 6 credits

Sakernas internet, 6 hp

TNK116

Main field of study

Electrical Engineering Transportation Systems Engineering

Course level

Second cycle

Course type

Programme course

Examiner

Vangelis Angelakis

Director of studies or equivalent

Erik Bergfeldt

Education components

Preliminary scheduled hours: 48 h
Recommended self-study hours: 112 h

Available for exchange students

Yes
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV
6CKTS Communications, Transport and Infrastructure, Master of Science in Engineering 8 (Spring 2023) 2 1 English Norrköping, Norrköping E
6CKTS Communications, Transport and Infrastructure, Master of Science in Engineering (Master Profile Smart Cities) 8 (Spring 2023) 2 1 English Norrköping, Norrköping C
6CIEN Electronics Design Engineering, Master of Science in Engineering 8 (Spring 2023) 2 1 English Norrköping, Norrköping E
6MTSL Intelligent Transport Systems and Logistics, Master's Programme 2 (Spring 2023) 2 1 English Norrköping, Norrköping E

Main field of study

Electrical Engineering, Transportation Systems Engineering

Course level

Second cycle

Advancement level

A1X

Course offered for

  • Master of Science in Electronics Design Engineering
  • Master of Science in Communications, Transport and Infrastructure
  • Master's Programme in Intelligent Transport Systems and Logistics

Prerequisites

The course labs and project will deal with IoT devices programming, thus programming/developing skills (especially in C/Java) are necessary. 

Intended learning outcomes

After the course the student should be able to:

  • Discuss major machine-to-machine (M2M) communication characteristics and analyse them
  • Identify and analyse the requirements for network layer support for an Internet of Things (IoT) infrastructure
  • Design solutions for integrating smart objects into IoT frameworks
  • Design IoT architectures and services
  • Evaluate the performance of IoT systems based on identified key performance indicators

Course content

This course introduces the design principles of the Internet of Things (IoT), their device and infrastructure-related architectures, technologies and protocol frameworks towards enabling the formation of highly distributed and ubiquitous networks with seamlessly connected heterogeneous objects. The student will learn to design and analyze such networks and architectures to support the development of intelligent services, with different performance requirements, in a variety of application domains.

Specifically, students will be exposed to architectures and methodological paradigms for the Internet of Things, and protocols at the different levels of the IoT stack. They will also learn to map those concepts on an access layer (including sensor, vehicular and cellular networks for machine-to-machine communication) and network layer (with particular emphasis on IPv6-based solutions), and analyze their performance. The course will also introduce technologies and protocols at the service and application layers, which enable the integration of embedded devices in web-based, distributed applications. 

Teaching and working methods

The course comprises lectures, programming assignments, and an implementation project.

Examination

LAB1Laboratory Work4 creditsU, 3, 4, 5
UPG1Assignments2 creditsU, 3, 4, 5

The final grade is weighted by the distribution of credits of the partial examinations.

Grades

Four-grade scale, LiU, U, 3, 4, 5

Other information

About teaching and examination language

The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows: 

  • If teaching language is “Swedish”, the course as a whole could be given in Swedish, or partly in English. Examination language is Swedish, but parts of the examination can be in English.
  • If teaching language is “English”, the course as a whole is taught in English. Examination language is English.
  • If teaching language is “Swedish/English”, the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English depending on teaching language.

Other

The course is conducted in a manner where both men's and women's experience and knowledge are made visible and developed. 

The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point. 

The course is campus-based at the location specified for the course, unless otherwise stated under “Teaching and working methods”. Please note, in a campus-based course occasional remote sessions could be included.  

If special circumstances prevail, the vice-chancellor may in a special decision specify the preconditions for temporary deviations from this course syllabus, and delegate the right to take such decisions.

Department

Institutionen för teknik och naturvetenskap

Course literature

Other

    • Enabling Things to Talk, Designing IoT solutions with the IoT Architectural Reference Model, Springer, ISBN: 978-3-642-40403-0
    • Designing the Internet of Things, Adrian McEwen, Hakim Cassimally, ISBN: 978-1-118-43062-0
    • Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Vermesan, O. & Friess, P. Editors. ISBN: 8792982735
    • The Internet of Things. Greengard, S. (2015) ISBN: 0262527731
    • A list of recent/seminal research papers will also complement the course literature
Code Name Scope Grading scale
LAB1 Laboratory Work 4 credits U, 3, 4, 5
UPG1 Assignments 2 credits U, 3, 4, 5

The final grade is weighted by the distribution of credits of the partial examinations.

Other

  • Enabling Things to Talk, Designing IoT solutions with the IoT Architectural Reference Model, Springer, ISBN: 978-3-642-40403-0
  • Designing the Internet of Things, Adrian McEwen, Hakim Cassimally, ISBN: 978-1-118-43062-0
  • Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Vermesan, O. & Friess, P. Editors. ISBN: 8792982735
  • The Internet of Things. Greengard, S. (2015) ISBN: 0262527731
  • A list of recent/seminal research papers will also complement the course literature

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1. DISCIPLINARY KNOWLEDGE AND REASONING
1.1 Knowledge of underlying mathematics and science (courses on G1X-level)
X
LAB1

                            
1.2 Fundamental engineering knowledge (courses on G1X-level)
X
LAB1

                            
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level)
X
X
X
LAB1

                            
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level)
X
X
X
LAB1

                            
1.5 Insight into current research and development work
X
X
X
LAB1
UPG1

                            
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
2.1 Analytical reasoning and problem solving
X
X
X
LAB1
UPG1

                            
2.2 Experimentation, investigation, and knowledge discovery
X
X
X
LAB1
UPG1

                            
2.3 System thinking
X
X
X
LAB1
UPG1

                            
2.4 Attitudes, thought, and learning
X
X

                            
2.5 Ethics, equity, and other responsibilities
X
X
X
UPG1

                            
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
3.1 Teamwork
X
LAB1

                            
3.2 Communications
X
LAB1

                            
3.3 Communication in foreign languages
X

                            
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT
4.1 Societal conditions, including economically, socially and ecologically sustainable development
X

                            
4.2 Enterprise and business context
X

                            
4.3 Conceiving, system engineering and management
X
X
X
LAB1
UPG1

                            
4.4 Designing
X
X
X
LAB1
UPG1

                            
4.5 Implementing
X
X
X
LAB1
UPG1

                            
4.6 Operating
X
X
X
LAB1
UPG1

                            
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects
X

                            
5.2 Economic conditions for research and development projects

                            
5.3 Identification of needs, structuring and planning of research or development projects

                            
5.4 Execution of research or development projects

                            
5.5 Presentation and evaluation of research or development projects

                            

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.