Multiple Antenna Communications, 6 credits

Flerantennkommunikation, 6 hp

TSKS14

Main field of study

Computer Science and Engineering Electrical Engineering

Course level

Second cycle

Course type

Programme course

Examiner

Erik G. Larsson

Director of studies or equivalent

Lasse Alfredsson

Education components

Preliminary scheduled hours: 49 h
Recommended self-study hours: 111 h

Available for exchange students

Yes
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, Chinese 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, Chinese (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, French 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, French (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, German 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, German (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, Japanese 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, Japanese (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, Spanish 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering, Spanish (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6MCSY Communication Systems, Master's Programme 2 (Spring 2021) 2 3 Swedish/English Linköping, Valla C
6CDDD Computer Science and Engineering, M Sc in Engineering 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CDDD Computer Science and Engineering, M Sc in Engineering (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6MELE Electronics Engineering, Master's Programme (Analogue/Digital and RF IC Design) 2 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6MELE Electronics Engineering, Master's Programme (System-on-Chip) 2 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Chinese (Specialization Electrical Engineering) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - French (Specialization Electrical Engineering) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - German (Specialization Electrical Engineering) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Japanese (Specialization Electrical Engineering) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIEI Industrial Engineering and Management - International, M Sc in Engineering - Spanish (Specialization Electrical Engineering) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIII Industrial Engineering and Management, M Sc in Engineering 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CIII Industrial Engineering and Management, M Sc in Engineering (Electrical Engineering Specialization) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CITE Information Technology, M Sc in Engineering 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E
6CITE Information Technology, M Sc in Engineering (Communication) 8 (Spring 2021) 2 3 Swedish/English Linköping, Valla E

Main field of study

Computer Science and Engineering, Electrical Engineering

Course level

Second cycle

Advancement level

A1X

Course offered for

  • Master's Programme in Communication Systems
  • Master's Programme in Electronics Engineering
  • Computer Science and Engineering, M Sc in Engineering
  • Industrial Engineering and Management - International, M Sc in Engineering
  • Industrial Engineering and Management, M Sc in Engineering
  • Information Technology, M Sc in Engineering
  • Applied Physics and Electrical Engineering - International, M Sc in Engineering
  • Applied Physics and Electrical Engineering, M Sc in Engineering

Specific information

The course has been withdrawn

Prerequisites


From linear algebra: Computations with matrices and vectors, determinant, eigenvalues.
From Signals, information and communication (or equivalent): Channel models, channel capacity, the entropy concept.
From Digital communications: Multi‐carrier systems, link adaptation.
From Detection and Estimation of Signals: Estimation with linear signal models (recommended but not necessary).

A course in wireless communications is also recommended, but is not necessary.
 

Intended learning outcomes

After passing the course, the student should

  • be able to describe and discuss the fundamental limitations when using the wireless medium for communications; in particular, the relations between channel capacity, channel coherence, spatial degrees of freedom, transmission power, pilot contamination, and bandwidth
  • be able to identify and describe how multiple antenna techniques are used to achieve high capacity in point‐to‐point as well as multi‐user communications
  • with some precision be able to solve engineering oriented problems regarding the achievable performance and limits of multiple antenna communications
  • be able to utilize power control and other parameters to design communication systems that meet given service quality requirements
  • experimentally validate the main theoretic multiple antenna concepts. 

Course content

Fundamental limits: Capacity behavior as power or bandwidth increases. Examples of practical systems that are power and bandwidth limited. Orthogonal versus non-orthogonal transmission in scenarios with multiple users.
Basic multiple antenna channels: Array gain, capacity of channels with multiple antennas at one side. Modeling of multi‐antenna channel responses.
Fading channels: Rayleigh fading channels, outage capacity, diversity, channel coherence, ergodic capacity.
Point‐to‐point MIMO: Capacity of channels with multiple antennas at both sides, multiplexing gain, spatial degrees of freedom.
Uplink multi‐user MIMO: Uplink capacity, non‐linear and linear detection, channel estimation, capacity bounds in systems with many antennas.
Downlink multi‐user MIMO: Linear precoding, capacity bounds in systems with many antennas, differences and similarities between uplink and downlink.
Power control: Rate region, typical operating points, basic power allocation formulations.
Cellular networks: Engineering aspects of applying multiple antenna techniques in cellular networks, including reuse strategies, pilot contamination, and interference management.
The purpose of the laboratory work is to become familiar with the zero‐forcing processing concept, to implement such a technique, and to evaluate its behaviors experimentally.

Teaching and working methods

Teaching is given as lectures, tutorials and laboratory exercises.

Examination

LAB1Laboratory work1 creditsU, G
TEN1Written examination5 creditsU, 3, 4, 5

Grades

Four-grade scale, LiU, U, 3, 4, 5

Course literature

T. L. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, Fundamentals of Massive MIMO, 2016. Cambridge University Press
Additional material will be distributed during the course.

Other information

About teaching and examination language

The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows: 

  • If teaching language is Swedish, the course as a whole or in large parts, is taught in Swedish. Please note that although teaching language is Swedish, parts of the course could be given in English. Examination language is Swedish. 
  • If teaching language is Swedish/English, the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English (depending on teaching language). 
  • If teaching language is English, the course as a whole is taught in English. Examination language is English. 

Other

The course is conducted in a manner where both men's and women's experience and knowledge are made visible and developed. 

The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point.  

Department

Institutionen för systemteknik

Director of Studies or equivalent

Lasse Alfredsson

Examiner

Erik G. Larsson

Course website and other links

http://www.commsys.isy.liu.se/en/student/kurser/TSKS14

Education components

Preliminary scheduled hours: 49 h
Recommended self-study hours: 111 h

Course literature

Books

Code Name Scope Grading scale
LAB1 Laboratory work 1 credits U, G
TEN1 Written examination 5 credits U, 3, 4, 5

Structure and organisation of study programmes

The contents and design of the programmes are to be continuously revised such that new knowledge is integrated into courses and specialisations. Within one programme, several study specialisations or profiles may be available. The identities of the study specialisations or profiles and the regulations governing how these may be selected are given in the syllabus and curriculum for the particular field of study and programmes.

The structure and organisation of the programmes are to follow specified criteria that are summarised in the syllabus for each programme.

  • The syllabus defines the aims of the study programme.
  • The curriculum, which constitutes one part of the syllabus for the field of study, gives details of the terms in which the various courses have been timetabled, and their scheduling through the academic year.
  • The course syllabus specifies, among other things, the aim and contents of the course, and the prior knowledge that a student must have, in addition to the admission requirements for the programme, in order to be able to benefit from the course.

Qualification requirements

The qualification requirements specified in the Higher Education Ordinance 2007 apply to students admitted after 1 July 2007. A student who has completed components of a programme after 1 July 2007 has the right to be assessed with respect to the qualification requirements specified by the Higher Education Ordinance 2007. In addition, local regulations laid down by the faculty boards and university board apply, see http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva/Examina.

Higher Education Act Chapter 1, Section 8:

First-cycle courses and study programmes are to develop:

  • the ability to make independent and critical assessments
  • the ability to identify, formulate and solve problems autonomously, and
  • the preparedness to deal with changes in working life.

In addition to knowledge and skills in their field of study, students shall develop the ability to:

  • gather and interpret information at a scholarly level
  • stay abreast of the development of knowledge, and
  • communicate their knowledge to others, including those who lack specialist knowledge in the field.

Qualifications within a study programme

Qualification requirements that are specific to a study programme are given in the syllabus for that programme.

Admission requirements and matriculation and postponement of matriculation

A person who has been accepted for a study programme is to start their studies (matriculate) in the term that is specified in the decision about admission. The date and location of the compulsory matriculation procedure will be communicated to those admitted to the first term of the programme.

Regulations concerning admission requirements, matriculation and postponement of matriculation have been laid down in the admission regulations for Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622645.

Admission to a later part of a programme

Admission to a part of a study programme is used here to refer to admission with the purpose of completing the programme and taking a degree. Admission to a later part of a programme may take place only if sufficient resources and space on the programme are available. Furthermore, the applicant must satisfy the entry requirements for the relevant term of the programme, as specified in http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva/Tekniska_fakulteten.

Interruption in studies

Notification of an interruption in studies is to be made through a web form, https://www.lith.liu.se/for-studenter/anmalan-studieuppehall?l=en. If such a notification is not made and if the student does not do a course registration during the first term during which the interruption is to take place, the interruption will be considered to be a withdrawal. An interruption in studies must cover a complete term, and notification of interruptions can be given for a maximum of two consecutive terms. Notification of resumption of studies is to take place at the course registration for the term that follows the interruption. 

A student who is taking an interruption in studies may during this period retake examinations. The student is responsible that registration for courses is carried out at the correct times in preparation for the resumption of studies.

Withdrawal from a study programme

A student who wishes to withdraw from a study programme must notify the study guidance counsellor. A student who leaves the studies without giving notification of an interruption in study and who fails to register on a course for the immediately subsequent term is considered to have withdrawn. A student who has withdrawn may return to the study programme if a vacancy is available that is not required for students returning after an interruption in study, and not required for students who are changing their location of study and/or study programme.

Courses within a study programme

The curriculum for the various years of a study programme specify which courses are mandatory (m), elective (e) and voluntary (v). If a student wishes to study a different combination than the one specified in the curriculum, an application must be made to the board of studies.

Voluntary courses

The course specified as voluntary (labelled with “v”) in the programme syllabus are assessed solely as voluntary courses, and credits from these may not contribute to the requirements for a degree.

Courses from another study programme or third-cycle courses

To include courses in a degree from another study programme or third-cycle courses, the student need to apply to and be granted this from the board of studies. If such a decision is not taken, such courses are regarded as voluntary courses.

When selecting a course from another programme, the admission requirements specified in the course syllabus must be satisfied.

Admission is granted to the extent that resources allow, provided that places are available on the course.

Admission to third-cycle courses requires studies at Master's level, i.e. year 4-5 or admitted to a Master's programme. Information can be obtained from the relevant director of advanced studies. 

Students taking a master’s programme in engineering

Students taking a master’s programme in engineering can apply to take courses given in Term 7 and later terms of the programme from all engineering master’s programmes. Admission to courses at Term 7 or higher requires the possession of at least 150 credits within the programme to which the student has been admitted.

Students taking a Bachelor of Science (Engineering)

Students taking Bachelor of Science (Engineering) degrees may apply to take courses specified in the programme syllabuses of all Bachelor of Science (Engineering) programmes. 

Students taking a Bachelor of Science

Students taking Bachelor of Science degrees may apply to take courses specified in the programme syllabuses of all Bachelor of Science programmes.  

Single-subject courses, courses from other faculties, or other Higher Education Institutions

To include single-subject courses, courses from another faculty, or courses from other Higher Education Institutions in a degree, the student need to apply to and be granted this from the board of studies. 

 

Registration for programme courses

Registration for courses that are given as part of a study programme must be made during the specified period, which has been preliminarily set to 1-10 April for the autumn term, and 1-10 October for the spring term. Information about course registration is published on the Study councellors webpages or in programme rooms, sent to students by email, and disseminated at scheduled information meetings.

Registration for programme courses as single-subject courses

Admission to a programme course as a single-subject subject course may take place only if sufficient resources and space on the course are available. Furthermore, the applicant must satisfy the entry requirements for the relevant course.

In the event of a scarcity of resources, the board of LiTH can decide to limit the possibilities of taking courses that are part of a programme as freestanding courses.

Study planning

Students who require support in planning their continued studies can contact the study guidance counsellor of the programme. Study planning involves the student and the study guidance counsellor together drawing up an individual plan for studies during the subsequent term. The individual plan may allow the student to deviate from the general curriculum.

Completed first-cycle courses are a precondition for successful studies at more advanced levels. For this reason, study planning is based on giving priority to courses from earlier years of study that have not been completed. If further capacity is available, new courses may be taken.

Study planning takes place on a regular basis if the student:

  • does not satisfy the requirements for progression to later terms. In order for a student to be able to participate in courses from later years in such cases, a decision of exemption is required.
  • does not satisfy the requirements for starting a degree project.

Other situations in which study planning may be required:

  • A student has fallen behind during the early part of a study programme and has failed to complete several courses.
  • A student has not satisfied the entry requirements for a degree project before term 6 of an engineering degree.
  • A student has applied for admission to a later part of a programme.
  • Studies have been carried out abroad.
  • A study programme is to be resumed after an interruption.

In these cases the study guidance counsellor supports the student in planning the continued studies, also in situations in which the student can register for the relevant courses without the need for a special decision for the continued studies.

Part of education abroad

Students can exchange study at LiTH for study at an institute of higher education abroad, and/or work on a degree project abroad.

In the event that study (courses) at LiTH are exchanged for study abroad, the faculty programme director is responsible for a decision about a preliminary individual study plan, which is to be drawn up in advance. After the exchange, the student apply to credit completed courses from the exchange into their degree. The guideline for credit assessment in an exchange is that the courses should be in line with the program's orientation. 

Regulations for entry requirements, ranking and nomination for study abroad through LiTH’s exchange agreements and for the compulsory study abroad period within Ii (Industrial Engineering and Management – International) and Yi (Applied Physics and Electrical Engineering – International) can be found at: http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva/Tekniska_fakulteten.

Course syllabus

A syllabus must be established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Timetabling

Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. 

Interrupting a course

The vice-chancellor’s decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: https://www.lith.liu.se/for-studenter/kurskomplettering?l=en. 

Cancelled courses

Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The Dean is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. 

Guidelines relating to examinations and examiners 

For details, see Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, Dnr LiU-2019-00920 (http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).

An examiner must be employed as a teacher at LiU according to the LiU Regulations for Appointments, Dnr LiU-2017-03931 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622784). For courses in second-cycle, the following teachers can be appointed as examiner: Professor (including Adjunct and Visiting Professor), Associate Professor (including Adjunct), Senior Lecturer (including Adjunct and Visiting Senior Lecturer), Research Fellow, or Postdoc. For courses in first-cycle, Assistant Lecturer (including Adjunct and Visiting Assistant Lecturer) can also be appointed as examiner in addition to those listed for second-cycle courses. In exceptional cases, a Part-time Lecturer can also be appointed as an examiner at both first- and second cycle, see Delegation of authority for the Board of Faculty of Science and Engineering.

Forms of examination

Principles for examination

Written and oral examinations and digital and computer-based examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies.

Principles for examination scheduling for courses that follow the study periods:

  • courses given in VT1 are examined for the first time in March, with re-examination in June and August
  • courses given in VT2 are examined for the first time in May, with re-examination in August and October
  • courses given in HT1 are examined for the first time in October, with re-examination in January and August
  • courses given in HT2 are examined for the first time in January, with re-examination in March and in August.

The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2). 

Examinations for courses that the board of studies has decided are to be held in alternate years are held three times during the school year in which the course is given according to the principles stated above.

Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.

When a course is given for the last time, the regular examination and two re-examinations will be offered. Thereafter, examinations are phased out by offering three examinations during the following academic year at the same times as the examinations in any substitute course. If there is no substitute course, three examinations will be offered during re-examination periods during the following academic year. Other examination times are decided by the board of studies. In all cases above, the examination is also offered one more time during the academic year after the following, unless the board of studies decides otherwise.

If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the board or boards of studies determine together the scheduling and frequency of re-examination occasions.

Retakes of other forms of examination

Regulations concerning retakes of other forms of examination than written examinations and digital and computer-based examinations are given in the LiU guidelines for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592.

Registration for examination

Until January 31 2021, the following applies according to previous guidelines: In order to take an written, digital or computer-based examination student must register in advance at the Student Portal during the registration period, which opens 30 days before the date of the examination and closes 10 days before it. Candidates are informed of the location of the examination by email, four days in advance. Students who have not registered for an examination run the risk of being refused admittance to the examination, if space is not available.

From February 1 2021, new guidelines applies for registration for written, digital or computer-based examination, Dnr LiU-2020-02033 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622682).

Symbols used in the examination registration system:

  ** denotes that the examination is being given for the penultimate time.

  * denotes that the examination is being given for the last time.

Code of conduct for students during examinations

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682.

Retakes for higher grade

Students at the Institute of Technology at LiU have the right to retake written examinations and digital and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN”, “DIT” and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

A retake is not possible on courses that are included in an issued degree diploma. 

Grades

The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). 

  • Grades U, 3, 4, 5 are to be awarded for courses that have written or digital examinations.
  • Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.
  • Grades Fail (U) and Pass (G) are to be used for degree projects and other independent work.

Examination components

The following examination components and associated module codes are used at the Faculty of Science and Engineering:

  • Grades U, 3, 4, 5 are to be awarded for written examinations (TEN) and digital examinations (DIT).
  • Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), digital preparatory written examination (DIK), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
  • Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as tutorial group (BAS) or examination item (MOM).
  • Grades Fail (U) and Pass (G) are to be used for the examination components Opposition (OPPO) and Attendance at thesis presentation (AUSK) (i.e. part of the degree project).

In general, the following applies:

  • Mandatory course components must be scored and given a module code.
  • Examination components that are not scored, cannot be mandatory. Hence, it is voluntary to participate in these examinations, and the voluntariness must be clearly stated. Additionally, if there are any associated conditions to the examination component, these must be clearly stated as well.
  • For courses with more than one examination component with grades U,3,4,5, it shall be clearly stated how the final grade is weighted.

For mandatory components, the following applies: If special circumstances prevail, and if it is possible with consideration of the nature of the compulsory component, the examiner may decide to replace the compulsory component with another equivalent component. (In accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592). 

For written examinations, the following applies: If the LiU coordinator for students with disabilities has granted a student the right to an adapted examination for a written examination in an examination hall, the student has the right to it. If the coordinator has instead recommended for the student an adapted examination or alternative form of examination, the examiner may grant this if the examiner assesses that it is possible, based on consideration of the course objectives. (In accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).

Reporting of examination results

The examination results for a student are reported at the relevant department.

Plagiarism

For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations, such as degree projects, project reports, etc. (this is sometimes known as “self-plagiarism”).

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat

In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=en.

Books

T. L. Marzetta, E. G. Larsson, H. Yang, H. Q. Ngo, (2016) Fundamentals of Massive MIMO Cambridge University Press

ISBN: 9781107175570

http://www.cambridge.org/se/academic/subjects/engineering/wireless-communications/fundamentals-massive-mimo

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1. DISCIPLINARY KNOWLEDGE AND REASONING
1.1 Knowledge of underlying mathematics and science (G1X level)
X
TEN1
Use mathematics as a tool: Analysis, linear algebra, optimization.
1.2 Fundamental engineering knowledge (G1X level)
X
TEN1
Design systems that satisfy practical requirements.
1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level)
X
X
X
LAB1
TEN1
Deep understanding of the channel capacity and its fundamental limitations, applications to fast and slowly fading channels, and capacity bounds for multiple antenna channels; Channel modeling for multiple antenna channels; point-to-point and multi-user MIMO communications; Power-control and rate regions.
1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level)

                            
1.5 Insight into current research and development work

                            
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
2.1 Analytical reasoning and problem solving
X
X
TEN1
Problem solving related to 1.3. With support from methods in mathematics and signal processing, identify, formulate, and modul advanced communication systems in multiple antenna systems.
2.2 Experimentation, investigation, and knowledge discovery
X
X
X
LAB1
Implement and evaluate methods from the course in Matlab, under other assumptions than used in the theory part.
2.3 System thinking
X
X
LAB1
TEN1
Systematically design of communication systems.
2.4 Attitudes, thought, and learning
X
X
TEN1
Ability to plan time and resources to learn the theory of the course to carry out successful individual problem solving.
2.5 Ethics, equity, and other responsibilities

                            
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
3.1 Teamwork
X
LAB1
The lab exercises are carried out in groups of 1-2 students.
3.2 Communications
X
LAB1
Written and oral examination of the results from lab exercises.
3.3 Communication in foreign languages
X
Course literature, teaching and examination is in English.
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT
4.1 External, societal, and environmental context

                            
4.2 Enterprise and business context

                            
4.3 Conceiving, system engineering and management
X
X
LAB1
Handling practical constraints, design and evaluation of communication systems.
4.4 Designing

                            
4.5 Implementing

                            
4.6 Operating

                            
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS
5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development

                            
5.2 Economic conditions for knowledge development

                            
5.3 Identification of needs, structuring and planning of research or development projects

                            
5.4 Execution of research or development projects

                            
5.5 Presentation and evaluation of research or development projects

                            

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.