Computer Networks and Internet Protocols, 6 credits

Datornät och internetprotokoll, 6 hp


Main field of study

Information Technology

Course level

First cycle

Course type

Programme course


Andrei Gurtov

Director of studies or equivalent

Patrick Lambrix

Education components

Preliminary scheduled hours: 38 h
Recommended self-study hours: 122 h
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV
6CITE Information Technology, M Sc in Engineering 2 (Spring 2018) 1 2 English Linköping C

Main field of study

Information Technology

Course level

First cycle

Advancement level


Course offered for

  • Information Technology, M Sc in Engineering

Specific information

The course is not available for exchange students

Entry requirements

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.


Perspectives on Information Technology.

Intended learning outcomes

Computer networks are playing an increasingly important role in the society. It is predicted that there will be 50 billion devices connected to the Internet by 2020. With an enormous increase in the number of wired and wireless devices connected through the Internet, as well as improved network bandwidth and computer capabilities, we are moving towards a society in which users expect to access anything they want, whenever and wherever they are. To enable this trend and all the emerging services provided over the Internet (e.g., social networks, video streaming, and the Internet of things) it is therefore critical for today's computer science students to have a good understanding for computer networks.

TDTS11 is an introductory course in computer networks and Internet protocols. The course covers the basics for how a network and its applications operate; what a protocol is; how they work, and what the most important applications of the Internet are. In the labs you will look at measurement data to build a basic understanding about some of the most important and fundamental Internet protocols. The final exam will test your understanding and knowledge of the subject. There will also be an opportunity to write a report. After the course, you are expected to be able to:

  • Explain, describe, and analyze a typical network architecture, including the importance of network layers and encapsulation
  • Explain the different basic types of protocols, communication channels, and network types
Overall, you should have an applied understanding of the network architecture and the protocols associated with the different layers:
  • Describe and analyze the most common application architectures in the Internet, how the most important application-layer protocols work and the service they provide
  • Analyze and explain important design considerations at the transport layer, including describing how TCP's flow control and congestion control works, and how reliable data transfer is implemented in TCP
  • Motivate and explain how routing and forwarding is implemented on the Internet, including describing how IP addressing and fragmentation works
  • Describe and explain different link-layer technologies and how they work
By the end of the course, you should also be able to:
  • Analyze network traces containing the most common Internet protocols
  • Show a deeper knowledge in a selected topic of interest, as exemplified in a report in which you are expected to use RFCs and other computer science reports specific to network protocols and Internet techniques

Course content

Protocol terminology. Protocol layering concept. Reference model for networking architecture. Application areas for compute networks. Network types and components (router, switch, repeater, hub). Local area networks (LANs) (IEEE 802.3). Wireless LANs (IEEE 802.11). Extending LANs. Internet and standardization. TCP/IP protocol family. Distance vector and link-state routing. ICMP. ARP. NAT. IP, addressing and introduction to routing in the internet: RIP, OSPF, BGP, DHCP. TCP retransmission, flow control and congestion control. Reliable data transfer in TCP. Three-way handshake. IPv6. Internet applications (naming with DNS, e-mail, file transfer, file sharing, web). Network security (IEEE 802.11i, WPA2, ssh). P2P networks. Internet history. Internet design principlet. LAN background. Trends. Wireshark, analysis filter and functions, trace, packet header, packet search, bandwidth, ttcp. Ping, traceroute. Communicaton modes and channels. Acces network techniques. Different types of MAC protocols. Collision domain. Sliding window. Error detection.

Teaching and working methods

The course consists of lectures, laborations, report writing, and presentation seminars.


UPG1Voluntary assignment0 creditsU, G
BAS1Study group activities1 creditsU, G
LAB1Laboratory work2 creditsU, G
TEN1Written examination3 creditsU, 3, 4, 5


Four-grade scale, LiU, U, 3, 4, 5

Other information

Supplementary courses:
Computer networks, Mobile systems, Project: Secure Mobile Systems, Advanced Networking


Institutionen för datavetenskap

Director of Studies or equivalent

Patrick Lambrix


Andrei Gurtov

Course website and other links

Education components

Preliminary scheduled hours: 38 h
Recommended self-study hours: 122 h

Course literature

Kurose, J. F. & Ross, K. W. (2017), Computer networking: a top-down approach. Seventh Edition. Pearson.
Code Name Scope Grading scale
UPG1 Voluntary assignment 0 credits U, G
BAS1 Study group activities 1 credits U, G
LAB1 Laboratory work 2 credits U, G
TEN1 Written examination 3 credits U, 3, 4, 5

Course syllabus

A syllabus has been established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.


Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. A central timetable is not drawn up for courses with fewer than five participants. Most project courses do not have a central timetable.

Interrupting a course

The vice-chancellor’s decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: 

Cancelled courses

Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The board of studies is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. 

Regulations relating to examinations and examiners 

Details are given in a decision in the university’s rule book:

Forms of examination


Written and oral examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies.

Principles for examination scheduling for courses that follow the study periods:

  • courses given in VT1 are examined for the first time in March, with re-examination in June and August
  • courses given in VT2 are examined for the first time in May, with re-examination in August and October
  • courses given in HT1 are examined for the first time in October, with re-examination in January and August
  • courses given in HT2 are examined for the first time in January, with re-examination at Easter and in August.

The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2). 

  • Examinations for courses that the board of studies has decided are to be held in alternate years are held only three times during the year in which the course is given.
  • Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.
  • If teaching is no longer given for a course, three examination occurrences are held during the immediately subsequent year, while examinations are at the same time held for any replacement course that is given, or alternatively in association with other re-examination opportunities. Furthermore, an examination is held on one further occasion during the next subsequent year, unless the board of studies determines otherwise.
  • If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the board or boards of studies determine together the scheduling and frequency of re-examination occasions.

Registration for examination

In order to take an examination, a student must register in advance at the Student Portal during the registration period, which opens 30 days before the date of the examination and closes 10 days before it. Candidates are informed of the location of the examination by email, four days in advance. Students who have not registered for an examination run the risk of being refused admittance to the examination, if space is not available.

Symbols used in the examination registration system:

  ** denotes that the examination is being given for the penultimate time.

  * denotes that the examination is being given for the last time.

Code of conduct for students during examinations

Details are given in a decision in the university’s rule book:

Retakes for higher grade

Students at the Institute of Technology at LiU have the right to retake written examinations and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN” and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

Retakes of other forms of examination

Regulations concerning retakes of other forms of examination than written examinations and computer-based examinations are given in the LiU regulations for examinations and examiners,


For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations.

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat

In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at


The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). Courses under the auspices of the faculty board of the Faculty of Science and Engineering (Institute of Technology) are to be given special attention in this regard.

  1. Grades U, 3, 4, 5 are to be awarded for courses that have written examinations.
  2. Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.

Examination components

  1. Grades U, 3, 4, 5 are to be awarded for written examinations (TEN).
  2. Grades Fail (U) and Pass (G) are to be used for undergraduate projects and other independent work.
  3. Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
  4. Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as other examination (ANN), tutorial group (BAS) or examination item (MOM).

The examination results for a student are reported at the relevant department.

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU’s rule book for education at first-cycle and second-cycle levels is available at 

Kurose, J. F. & Ross, K. W. (2017), Computer networking: a top-down approach. Seventh Edition. Pearson.

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1.1 Knowledge of underlying mathematics and science (G1X level)

1.2 Fundamental engineering knowledge (G1X level)

1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level)

1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level)

1.5 Insight into current research and development work

2.1 Analytical reasoning and problem solving

2.2 Experimentation, investigation, and knowledge discovery

2.3 System thinking

2.4 Attitudes, thought, and learning

2.5 Ethics, equity, and other responsibilities

3.1 Teamwork

3.2 Communications

3.3 Communication in foreign languages

4.1 External, societal, and environmental context

4.2 Enterprise and business context

4.3 Conceiving, system engineering and management

4.4 Designing

4.5 Implementing

4.6 Operating

5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development

5.2 Economic conditions for knowledge development

5.3 Identification of needs, structuring and planning of research or development projects

5.4 Execution of research or development projects

5.5 Presentation and evaluation of research or development projects


This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.