Physical Metallurgy, 6 credits
Materialvetenskap, 6 hp
TFYA21
Main field of study
Applied Physics PhysicsCourse level
Second cycleCourse type
Programme courseExaminer
Per EklundDirector of studies or equivalent
Magnus JohanssonEducation components
Preliminary scheduled hours: 42 hRecommended self-study hours: 118 h
Available for exchange students
YesMain field of study
Applied Physics, PhysicsCourse level
Second cycleAdvancement level
A1FCourse offered for
- Applied Physics and Electrical Engineering, M Sc in Engineering
- Physics and Nanoscience, Master's programme
- Materials Science and Nanotechnology, Master's programme
- Applied Physics and Electrical Engineering - International, M Sc in Engineering
Entry requirements
Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.
Prerequisites
Thermodynamics and Statistical Mechanics, Physics of Condensed Matter
Intended learning outcomes
This course gives the essence of materials science and advanced surface engineering as well as the thermodynamic conditions for nanotechnology. The aim is to give an understanding and control of the structure of matter at the ultramolecular level and the relation of this structure to properties (mechanical, electrical, etc.). This includes phase transformations based on a thermodynamical description of the liquid and solid state. We study the more complex features of the behaviour of functional materials and materials in extreme states. Focus is on aspects controlled by atomic diffusion and crystal defects. The course is tangential to physical metallurgy, crystallography, and semiconductor technology, as well as continuum and atomistic mechanics of solids. A goal is also to learn about the design and processing of electronic device materials and construction materials engineering.
Course content
This is a fundamental course in materials science following an international tradition. It concerns different classes of functional materials including metals, alloys, semiconductors, ceramics. It further deals with the thermodynamics of binary systems,; Phase diagrams; Equilibrium in solid solutions; Metastable states; Phase transformations; Precipitation; Kinetics for grain growth; Crystalline phases; Polytypism; Defects in crystals incl. vacancies, interstitials and dislocations; Solutions and alloys. Atomic processes: diffusion; Multiphase materials; Microstructure; Nanostructure; Relationships between theory, materials synthesis and processing, structure/bonding, and properties; Elasticity; Plasticity and Fracture; Materials Design and Processing
LABORATION 1: Metallography (identify phases and grains with the electron microscope)
LABORATION 2: Fractography (CSI-Linköping for a day)
LABORATION 3: Calorimetry (applied thermodynamics to create phase diagrams)
Teaching and working methods
Lectures and laborations
Examination
LAB1 | Laboratory work | 1.5 credits | U, G |
TEN1 | Written examination | 4.5 credits | U, 3, 4, 5 |
The exam consists of 9 topical questions chosen from some 90 questions, which will be distributed and discussed already during the course. A well prepared and active participation in the laboratory work sessions is mandatory. A number of optional home problem can be solved to give extra points to the exam.
Grades
Four-grade scale, LiU, U, 3, 4, 5Other information
Supplementary courses: Thin Film Physics, Analytical Methods in Materials Science, Nano Physics
Department
Institutionen för fysik, kemi och biologiDirector of Studies or equivalent
Magnus JohanssonExaminer
Per EklundCourse website and other links
http://www.ifm.liu.se/undergrad/fysikgtu/coursepage.html?selection=all&sort=kkEducation components
Preliminary scheduled hours: 42 hRecommended self-study hours: 118 h
Course literature
D.A. Porter and K.E. Easterling: Phase transformations in Metals and Alloys (Van Nostrand Reinhold, London). Lab-PM, IFMCode | Name | Scope | Grading scale |
---|---|---|---|
LAB1 | Laboratory work | 1.5 credits | U, G |
TEN1 | Written examination | 4.5 credits | U, 3, 4, 5 |
The exam consists of 9 topical questions chosen from some 90 questions, which will be distributed and discussed already during the course. A well prepared and active participation in the laboratory work sessions is mandatory. A number of optional home problem can be solved to give extra points to the exam.
Regulations (apply to LiU in its entirety)
The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.
LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (courses on G1X-level) |
X
|
X
|
X
|
|||
1.2 Fundamental engineering knowledge (courses on G1X-level) |
|
X
|
X
|
|||
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level) |
X
|
X
|
|
|||
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
X
|
X
|
|
|||
2.2 Experimentation, investigation, and knowledge discovery |
X
|
X
|
X
|
|||
2.3 System thinking |
|
X
|
X
|
|||
2.4 Attitudes, thought, and learning |
|
X
|
X
|
|||
2.5 Ethics, equity, and other responsibilities |
X
|
|
|
|||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
|
|
X
|
|||
3.2 Communications |
|
|
X
|
|||
3.3 Communication in foreign languages |
X
|
|
X
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 Societal conditions, including economically, socially and ecologically sustainable development |
X
|
|
|
|||
4.2 Enterprise and business context |
X
|
|
|
|||
4.3 Conceiving, system engineering and management |
X
|
|
|
|||
4.4 Designing |
X
|
|
|
|||
4.5 Implementing |
X
|
|
|
|||
4.6 Operating |
|
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects |
X
|
|
|
|||
5.2 Economic conditions for research and development projects |
X
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
X
|
|
|
|||
5.4 Execution of research or development projects |
X
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.