Engineering Mechanics II, 6 credits
Mekanik, del 2, 6 hp
TMME04
Main field of study
Applied Physics Mechanical EngineeringCourse level
First cycleCourse type
Programme courseExaminer
Peter ChristensenDirector of studies or equivalent
Peter SchmidtEducation components
Preliminary scheduled hours: 58 hRecommended self-study hours: 102 h
Course offered for | Semester | Period | Timetable module | Language | Campus | ECV | |
---|---|---|---|---|---|---|---|
6CYYY | Applied Physics and Electrical Engineering, M Sc in Engineering | 4 (Spring 2017) | 1 | 4 | Swedish | Linköping, Valla | C |
Main field of study
Applied Physics, Mechanical EngineeringCourse level
First cycleAdvancement level
G2XCourse offered for
- Applied Physics and Electrical Engineering, M Sc in Engineering
Entry requirements
Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.
Prerequisites
Statics and particle mechanics. Basic courses in algebra and analysis (especially the geometric interpretations of scalar and vector products, and ordinary differential equations).Intended learning outcomes
The purpose of the course is to give the students an understanding knowledge of the basic laws of rigid body mechanics, and ability to independently apply the laws on concrete problems. After the course the student should:
- Know the definitions of the fundamental concepts used in rigid body mechanics, such as velocity, angular velocity, acceleration, angular acceleration, linear momentum, angular momentum, mass moment of inertia, linear impulse, angular impulse, power, work and energy.
- Be able to derive expressions for, and also compute, the entities above for problems of an engineering nature.
- Be able to draw free body diagrams, formulate kinematic constraint equations, formulate Euler's laws and derive the ordinary differential equations that describe how bodies move.
- Be able to solve these differential equations numerically for mechanical systems with at most three degrees of freedom using MATLAB.
- Be able to perform simpler derivations of results in rigid body mechanics.
- Be able to describe the outcome of simpler mechanical experiments in qualitative terms.
- Be able to identify results that are clearly unreasonable.
Course content
Planar kinematics of rigid bodies (veclocity and acceleration relations, instant center of velocity, relative motion). Planar kinetics of rigid bodies (Euler's laws of motion, mass moment of inertia, power, work energy, impulse, angular impulse, impact). Spatial kinematics of rigid bodies (angular velocity vector, velocity and acceleration relations). Spatial kinetics of rigid bodies (Euler's laws of motion, mass moment of inertia matrix, fixed axis rotation, Euler's equations, work, energy, impulse, angular impulse, impact, gyro dynamics).
Teaching and working methods
The lectures treat important subjects, and may contain experiments to illustrate the presented theory. During the classes, the students strengthen their ability to solve problems independently. In a compulsory computer exercise, MATLAB is used to simulate the motion of a mechanical system.
Examination
UPG1 | Examination | 1 credits | U, G |
TEN1 | Written examination | 5 credits | U, 3, 4, 5 |
Grades
Four-grade scale, LiU, U, 3, 4, 5Other information
Supplementary courses: Multibody Dynamics and Robotics, Models of Mechanics, Flight Dynamics Y, Analytical mechanics, Biomechanics
Department
Institutionen för ekonomisk och industriell utvecklingDirector of Studies or equivalent
Peter SchmidtExaminer
Peter ChristensenCourse website and other links
Education components
Preliminary scheduled hours: 58 hRecommended self-study hours: 102 h
Course literature
P. Christensen, Elementär mekanik, del 2: stelkroppsmekanikCode | Name | Scope | Grading scale |
---|---|---|---|
UPG1 | Examination | 1 credits | U, G |
TEN1 | Written examination | 5 credits | U, 3, 4, 5 |
Regulations (apply to LiU in its entirety)
The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.
LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (courses on G1X-level) |
|
X
|
X
|
|||
1.2 Fundamental engineering knowledge (courses on G1X-level) |
|
|
|
|||
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level) |
|
|
|
|||
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
|
X
|
|
|||
2.2 Experimentation, investigation, and knowledge discovery |
|
|
|
|||
2.3 System thinking |
|
|
|
|||
2.4 Attitudes, thought, and learning |
|
|
|
|||
2.5 Ethics, equity, and other responsibilities |
|
|
|
|||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
|
|
X
|
|||
3.2 Communications |
|
|
X
|
|||
3.3 Communication in foreign languages |
|
|
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 Societal conditions, including economically, socially and ecologically sustainable development |
|
|
|
|||
4.2 Enterprise and business context |
|
|
|
|||
4.3 Conceiving, system engineering and management |
|
|
|
|||
4.4 Designing |
|
|
|
|||
4.5 Implementing |
|
|
|
|||
4.6 Operating |
|
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects |
|
|
|
|||
5.2 Economic conditions for research and development projects |
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
|
|
|
|||
5.4 Execution of research or development projects |
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.