Semiconductor Technology, 12 credits

Halvledarteknik och tillverkning, 12 hp

TNE058

The course is disused.

Main field of study

Electrical Engineering Applied Physics

Course level

Second cycle

Course type

Programme course

Examiner

Amir Baranzahi

Director of studies or equivalent

Adriana Serban

Education components

Preliminary scheduled hours: 108 h
Recommended self-study hours: 212 h

Available for exchange students

Yes
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV
6CIEN Electronics Design Engineering, M Sc in Engineering 7 (Autumn 2017) 1, 2 3, 2 Swedish/English Norrköping, Norrköping C

Main field of study

Electrical Engineering, Applied Physics

Course level

Second cycle

Advancement level

A1X

Course offered for

  • Electronics Design Engineering, M Sc in Engineering

Entry requirements

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.

Prerequisites

The students attending this course should have basic knowledge in physics and mathematics. The student should be able to solve system of equations, differential equations and have good knowledge in differential and integral calculus. Student should have basic knowledge in Newtonian mechanics and classical physics, electromagnetism, optics and wave. It is expected that the student have some knowledge from modern physics and can use Shrödinger equation on simple systems

Intended learning outcomes

The aim of the course is to present the fundamental principle of semiconductor devices and how models of devices can be created from this understanding. How the semiconductor devices are fabricated? Basic unit processes will be presented. The students get the basic knowledge that is necessary to understand, work and produce integrated circuits and optoelectronics. After this course the student should

  • Describe manufacturing steps, lithography, oxidation, metallization, and etching.
  • Integrate the manufacturing steps for manufacturing of bipolar transistors, MOSFET, CMOS and MEMS.
  • Explain the terms, band gap, energy level, mobility, effective mass, charge generation and recombination, doping, drift, diffusion, equilibrium and steady state.
  • •Apply relations between band gap, energy level, mobility, effective mass, charge generation and recombination, doping, drift, diffusion, conductivity, current density, temperature and illumination in semiconductors.
  • Calculate and determine the material parameters (band gap, doping, level, carrier lifetime, diffusion length) from electrical characteristics of semiconductor devices.
  • Design pn-junctions, Schottky diodes, bipolar transistor, MOSFET, and pn-solar cells having given characteristics.
  • Design pn-junctions, Schottky diodes, bipolar transistor, and MOSFET.

Course content

Basic semiconductor physics, concept and mechanisms such as band diagram, valence- and conduction band, Fermi level, Fermi-Dirac statistics, band gap, effective mass, drift, diffusion, doping, intrinsic, extrinsic, electron-hole pair, charge generation and recombination, minority carriers, majority carriers etc. will be discussed thoroughly. Function and modelling of pn-junctions, contact potential, depletion region, and different break down mechanisms for pn-junctions will be explained. Functions and I-V characteristics of some other devices such as MOSFET and bipolar transistors will also be discussed. Basic unit processes such as ion implantation, diffusion, thermal oxidation, annealing, deposition processes such as evaporation, sputtering, CVD, epitaxial growth, fabrication processes such as optical and non-optical lithography, photoresist and etching will be introduced. The students should enter deeply into one of the subjects below and present their work for the whole class. Device isolation, Contacts and metallization, CMOS technology, GaAs technology, bipolar technology and MEMS. Laboratory assignment includes classical labs with diode and transistor measurements.

Teaching and working methods

Lectures and tutorial. Laboratory work, Weekly Home assignment , Student oral presentations. Mandatory attendance of some lectures and during student presentations.
The course runs over the entire autumn semester.

Examination

UPG2Optional assignments0 creditsU, G
DUG1Midterm Short Exam2 creditsU, G
UPG1Assignment, Written and Oral Presentation1 creditsU, G
LAB1Laboratory work1 creditsU, G
TEN1Written Examination8 creditsU, 3, 4, 5
Mandatory attendance during student presentations

Grades

Four-grade scale, LiU, U, 3, 4, 5

Other information

Supplementary courses: Solar Cell Technology, Power Electronics,and Charge Transport in Organic and Inorganic Materials, System Design.

Department

Institutionen för teknik och naturvetenskap

Director of Studies or equivalent

Adriana Serban

Examiner

Amir Baranzahi

Course website and other links

http://www2.itn.liu.se/utbildning/kurs/index.html?coursecode=TNE058

Education components

Preliminary scheduled hours: 108 h
Recommended self-study hours: 212 h

Course literature

Additional literature

Books

  • Jasprit Singh, (2004) Semiconductor Devices, basic principles
    ISBN: 0-471-36245-X
    Wiley & Sons
  • Sami Franssila, (2004) Introduction to Microfabrication
    ISBN: 0470-85106-6
    Wiley & Sons
Code Name Scope Grading scale
UPG2 Optional assignments 0 credits U, G
DUG1 Midterm Short Exam 2 credits U, G
UPG1 Assignment, Written and Oral Presentation 1 credits U, G
LAB1 Laboratory work 1 credits U, G
TEN1 Written Examination 8 credits U, 3, 4, 5
Mandatory attendance during student presentations

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva. 

Additional literature

Books

Jasprit Singh, (2004) Semiconductor Devices, basic principles

ISBN: 0-471-36245-X

Wiley & Sons

Sami Franssila, (2004) Introduction to Microfabrication

ISBN: 0470-85106-6

Wiley & Sons

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1. DISCIPLINARY KNOWLEDGE AND REASONING
1.1 Knowledge of underlying mathematics and science (G1X level)
X

                            
1.2 Fundamental engineering knowledge (G1X level)
X

                            
1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level)
X
X
DUG1
LAB1
TEN1
UPG1

                            
1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level)

                            
1.5 Insight into current research and development work

                            
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
2.1 Analytical reasoning and problem solving
X
X
X
LAB1
TEN1

                            
2.2 Experimentation, investigation, and knowledge discovery
X
X
LAB1

                            
2.3 System thinking

                            
2.4 Attitudes, thought, and learning
X
X
DUG1
LAB1
TEN1
UPG1

                            
2.5 Ethics, equity, and other responsibilities
X
X
DUG1
LAB1
TEN1
UPG1

                            
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
3.1 Teamwork
X
X
LAB1
UPG1

                            
3.2 Communications
X
X
X
UPG1

                            
3.3 Communication in foreign languages
X
X
UPG1

                            
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT
4.1 External, societal, and environmental context

                            
4.2 Enterprise and business context

                            
4.3 Conceiving, system engineering and management

                            
4.4 Designing

                            
4.5 Implementing

                            
4.6 Operating

                            
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS
5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development

                            
5.2 Economic conditions for knowledge development

                            
5.3 Identification of needs, structuring and planning of research or development projects

                            
5.4 Execution of research or development projects

                            
5.5 Presentation and evaluation of research or development projects

                            

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.