Image and Audio Coding, 6 credits
Bild- och ljudkodning, 6 hp
TSBK02
Main field of study
Electrical Engineering Media Technology and EngineeringCourse level
Second cycleCourse type
Programme courseExaminer
Ingemar RagnemalmDirector of studies or equivalent
Klas NordbergEducation components
Preliminary scheduled hours: 48 hRecommended self-study hours: 112 h
Available for exchange students
YesMain field of study
Electrical Engineering, Media Technology and EngineeringCourse level
Second cycleAdvancement level
A1XCourse offered for
- Computer Science and Engineering, M Sc in Engineering
- Industrial Engineering and Management - International, M Sc in Engineering
- Industrial Engineering and Management, M Sc in Engineering
- Applied Physics and Electrical Engineering, M Sc in Engineering
- Communication Systems, Master's programme
- Information Technology, M Sc in Engineering
- Applied Physics and Electrical Engineering - International, M Sc in Engineering
Entry requirements
Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.
Prerequisites
Signal Theory, Linear Algebra. Fourier transformsIntended learning outcomes
The course explains the principles behind modern techniques for communicating images and sound. Having fulfilled the course, the student has learned to analyze the performance of predictive and transform-based methods and is also able to explain the design criterias behind methods such as JPEG, MPEG for images and MP3, AAC for audio.
Course content
Statistical signal models and Entropy. Lossless coding. Performance bounds when coding analogue signals. Sampling and quantisation. PCM, predictive coding, transform coding, wavelet coding. LPC, CELP and model-based coding. Standardised methods for pictures and sound (JPEG, MPEG, MP3, AAC). Video distribution over networks.
Teaching and working methods
The course consists of lectures, tutorials, and laborations.
Examination
LAB1 | Laboratory work | 1.5 credits | U, G |
TEN1 | Written examination | 4.5 credits | U, 3, 4, 5 |
Grades
Four-grade scale, LiU, U, 3, 4, 5Other information
Supplementary courses: Project courses or research-oriented courses in the areas of media communication, mobil communication, medical image systems. The course is also suitable as a prerequisite for Master thesis studies in these fields.
Department
Institutionen för systemteknikDirector of Studies or equivalent
Klas NordbergExaminer
Ingemar RagnemalmCourse website and other links
Education components
Preliminary scheduled hours: 48 hRecommended self-study hours: 112 h
Course literature
Khalid Sayood, "Introduction to Data Compression", ISBN 978-0-12-415796-5Code | Name | Scope | Grading scale |
---|---|---|---|
LAB1 | Laboratory work | 1.5 credits | U, G |
TEN1 | Written examination | 4.5 credits | U, 3, 4, 5 |
Regulations (apply to LiU in its entirety)
The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.
LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (G1X level) |
|
|
X
|
|||
1.2 Fundamental engineering knowledge (G1X level) |
|
|
X
|
|||
1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level) |
|
X
|
|
|||
1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
|
|
X
|
|||
2.2 Experimentation, investigation, and knowledge discovery |
|
X
|
|
|||
2.3 System thinking |
|
X
|
|
|||
2.4 Attitudes, thought, and learning |
|
X
|
|
|||
2.5 Ethics, equity, and other responsibilities |
X
|
|
|
|||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
|
|
|
|||
3.2 Communications |
|
|
X
|
|||
3.3 Communication in foreign languages |
|
|
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 External, societal, and environmental context |
|
|
|
|||
4.2 Enterprise and business context |
X
|
|
|
|||
4.3 Conceiving, system engineering and management |
X
|
|
|
|||
4.4 Designing |
|
|
|
|||
4.5 Implementing |
|
|
|
|||
4.6 Operating |
|
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development |
|
|
|
|||
5.2 Economic conditions for knowledge development |
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
|
|
|
|||
5.4 Execution of research or development projects |
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.