Digital Filters, 6 credits
Digitala filter, 6 hp
TSTE06
Main field of study
Electrical EngineeringCourse level
Second cycleCourse type
Programme courseExaminer
Håkan JohanssonDirector of studies or equivalent
Klas NordbergEducation components
Preliminary scheduled hours: 56 hRecommended self-study hours: 104 h
Available for exchange students
YesMain field of study
Electrical EngineeringCourse level
Second cycleAdvancement level
A1XCourse offered for
- Computer Science and Engineering, M Sc in Engineering
- Industrial Engineering and Management - International, M Sc in Engineering
- Electronics Design Engineering, M Sc in Engineering
- Industrial Engineering and Management, M Sc in Engineering
- Applied Physics and Electrical Engineering, M Sc in Engineering
- Electronics Engineering, Master's programme
- Information Technology, M Sc in Engineering
- Applied Physics and Electrical Engineering - International, M Sc in Engineering
Entry requirements
Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.
Prerequisites
Basic courses in circuit theory and linear systems.Intended learning outcomes
The aim of the course is to give the theoretical basis for analysis and synthesis of digital filters and basic knowledge about implementation of digital filters in hardware and software. After the course, the student is expected to be able to:
- synthesize FIR and IIR filters, especially wave digital filters,
- analyze finite wordlength effects in digital filters,
- synthesize digital systems with several sampling frequencies using interpolation and decimation,
- analyze computational properties of recursive algorithms,
- use computer programs to solve problems within digital filtering.
Course content
Discrete-time and digital signals and systems. Approximation theory, Butterworth, Chebyshev-I, Chebyshev-II and Cauer-filters. Frequency transformations. Synthesis of IIR and FIR filters, especially wave digital filters. System with several sampling frequencies, decimation and interpolation. Finite word lengths effects. Computational properties of recursive DSP algorithms. Implementation of digital filters.
Teaching and working methods
Lectures, lessons, and laboratory exercises
Examination
LAB1 | Laboratory work | 1.5 credits | U, G |
TEN1 | Written examination | 4.5 credits | U, 3, 4, 5 |
Grades
Four-grade scale, LiU, U, 3, 4, 5Department
Institutionen för systemteknikDirector of Studies or equivalent
Klas NordbergExaminer
Håkan JohanssonCourse website and other links
Education components
Preliminary scheduled hours: 56 hRecommended self-study hours: 104 h
Course literature
L. Wanhammar and H. Johansson: Digital Filters Using Matlab, 2013 L. Wanhammar: Tables and Formulas for Analog and Digital FiltersCode | Name | Scope | Grading scale |
---|---|---|---|
LAB1 | Laboratory work | 1.5 credits | U, G |
TEN1 | Written examination | 4.5 credits | U, 3, 4, 5 |
Regulations (apply to LiU in its entirety)
The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.
LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (G1X level) |
|
|
X
|
|||
1.2 Fundamental engineering knowledge (G1X level) |
|
X
|
X
|
|||
1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level) |
|
X
|
X
|
|||
1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
|
X
|
X
|
|||
2.2 Experimentation, investigation, and knowledge discovery |
|
X
|
X
|
|||
2.3 System thinking |
|
X
|
|
|||
2.4 Attitudes, thought, and learning |
|
|
X
|
|||
2.5 Ethics, equity, and other responsibilities |
|
|
|
|||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
|
|
X
|
|||
3.2 Communications |
|
|
X
|
|||
3.3 Communication in foreign languages |
|
|
X
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 External, societal, and environmental context |
|
|
|
|||
4.2 Enterprise and business context |
|
|
|
|||
4.3 Conceiving, system engineering and management |
|
|
|
|||
4.4 Designing |
|
|
|
|||
4.5 Implementing |
|
|
|
|||
4.6 Operating |
|
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development |
|
|
|
|||
5.2 Economic conditions for knowledge development |
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
|
|
|
|||
5.4 Execution of research or development projects |
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.