Medical Radiation Physics, 8 credits
Medicinsk strålningsfysik, 8 hp
TVFA02
Main field of study
Biomedical EngineeringCourse level
First cycleCourse type
Programme courseExaminer
Alexandr MalusekDirector of studies or equivalent
Alexandr MalusekEducation components
Preliminary scheduled hours: 64 hRecommended self-study hours: 149 h
Course offered for | Semester | Period | Timetable module | Language | Campus | ECV | |
---|---|---|---|---|---|---|---|
6CMED | Biomedical Engineering, Master of Science in Engineering | 6 (Spring 2024) | 1, 2 | 2, 2 | Swedish | Linköping, Valla | C |
Main field of study
Biomedical EngineeringCourse level
First cycleAdvancement level
G2FCourse offered for
- Master of Science in Biomedical Engineering
Prerequisites
Wave motion, Electromagnetism - Theory and Application, Modern physic.
Intended learning outcomes
The course will provide the student with basic knowledge of how ionizing and non-ionizing radiation interacts with matter, the basics of dosimetry of ionizing radiation with emphasis on diagnostic and therapeutic applications in health care. The course also introduces radiation biology and radiological protection of patient and staff so that the student are made aware of the radiation hazards for humans and how to protect him/herself and patient from unnecessary irradiation. The course gives an overview of regulations that are formed around the use of ionizing radiation in health care and how different staff (i.e. physicist, engineers, nurses and doctors) collaborates on quality assurance on equipments that produce radiation.
After the course the student should be able to:
- Describe how the human body is affected by ionizing radiation (Solo2)
- Describe quantities used for radiation dosimetry, report on how these are measured or computed and to do simple dose estimations (Solo2)
- Describe fundamental knowledge of radiological protection so that the student can protect him/herself and assist others to manage their own safety (Solo2)
- Explain how ionizing radiation interact with matter and use this knowledge to select a suitable method to measure radiation (Solo3)
- Explain radioactive decay, give example of how it is used in the hospital and reflect on how radiological waste is managed from an environmental perspective (Solo3)
- Describe how different radiation detectors operate and make an argument why some radiation detectors are suitable for measuring a particular type of ionizing radiation (Solo3)
- Apply different radiation detectors working principles and use this knowledge in different radiation environments to assess the reasonableness in the measured data (Solo4)
- To briefly describe the regulations and requirement from government and authorities (i.e. Swedish Radiation Protection Agency) that surrounds the use of ionizing radiation in society, specifically in the health care system with focus on the responsibility of the medical engineer (Solo2)
- Describe and give examples of systematic quality assurance in the health care system with emphasis on radiological equipment (Solo2)
- Describe the basic physics of nuclear magnetic resonance as a basis for the course TBMT02 (Solo2)
- Describe the basic physics of ultra sound as a basis for the course TBMT02 (Solo2)
Course content
The course focuses on the basic physics of ionizing radiation behind the many diagnostic and therapeutic applications in health care and, as a central part, include interaction of ionizing radiation and matter In radiation dosimetry we study how ionizing radiations impart energy to for example human tissue and how the energy-impartation per unit mass (absorbed dose) is quantified by measurements or calculations. Radiation detectors are used for patient and staff dosimetry, for creating diagnostic images, for surveillance and for quality assurance of the environment in health care and industry. The subject of radiation biology describes how radiation affects living organisms and what risk are associated with ionizing and non-ionizing radiation, in the short and long run. Radiological protection is a subject that includes how to protect staff and patients from unnecessary irradiation or damages due to radiation. The course includes the basic physics of nuclear magnetic resonance and ultra sound – techniques that are used in health care for imaging and for quantitative analysis.
Teaching and working methods
The course is divided into lectures, seminars, study group sessions, tutorials, laboratory work and a field study exercises. The course is scheduled for student-centred learning with sessions of problem-based learning that are compulsory (1 ECTS). The course is to a large extent based on laboratory work and all lab sessions are compulsory and are completed by submitting a written lab report (3 ECTS).
Examination
LAB1 | Laboratory work and field study exercise | 3 credits | U, G |
HEM1 | Home Assignments | 4 credits | U, 3, 4, 5 |
BAS1 | Laboratory work and field study exercise | 1 credits | U, G |
Grades
Four-grade scale, LiU, U, 3, 4, 5Other information
Supplementary courses: Medical Imaging
About teaching and examination language
The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows:
- If teaching language is “Swedish”, the course as a whole could be given in Swedish, or partly in English. Examination language is Swedish, but parts of the examination can be in English.
- If teaching language is “English”, the course as a whole is taught in English. Examination language is English.
- If teaching language is “Swedish/English”, the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English depending on teaching language.
Other
The course is conducted in such a way that there are equal opportunities with regard to sex, transgender identity or expression, ethnicity, religion or other belief, disability, sexual orientation and age.
The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point.
The course is campus-based at the location specified for the course, unless otherwise stated under “Teaching and working methods”. Please note, in a campus-based course occasional remote sessions could be included.
Department
Institutionen för hälsa, medicin och vårdCourse literature
Grundläggande strålningsfysik av Mats Isaksson (Studentlitteratur) Ytterligare kursmaterial finns på kursens webbsida, se nedan.Code | Name | Scope | Grading scale |
---|---|---|---|
LAB1 | Laboratory work and field study exercise | 3 credits | U, G |
HEM1 | Home Assignments | 4 credits | U, 3, 4, 5 |
BAS1 | Laboratory work and field study exercise | 1 credits | U, G |
Course syllabus
A syllabus must be established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.
Timetabling
Program courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. Single subject courses can be timetabled at other times.
Interruption in and deregistration from a course
The LiU decision, Guidelines concerning confirmation of participation in education, Dnr LiU-2020-02256 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/764582), states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered are therefore obliged to report the interruption so that this can be noted in Ladok. Deregistration from or interrupting a course is carried out using a Web-based form.
Cancelled courses and changes to the course syllabus
Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The Dean is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. For single subject courses, the cancellation must be done before students are admitted to the course (in accordance with LiUs regulation Dnr LiU-2022-01200, https://styrdokument.liu.se/Regelsamling/VisaBeslut/622645).
Guidelines relating to examinations and examiners
For details, see Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, Dnr LiU-2023-00379 (http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).
An examiner must be employed as a teacher at LiU according to the LiU Regulations for Appointments, Dnr LiU-2022-04445 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622784). For courses in second-cycle, the following teachers can be appointed as examiner: Professor (including Adjunct and Visiting Professor), Associate Professor (including Adjunct), Senior Lecturer (including Adjunct and Visiting Senior Lecturer), Research Fellow, or Postdoc. For courses in first-cycle, Assistant Lecturer (including Adjunct and Visiting Assistant Lecturer) can also be appointed as examiner in addition to those listed for second-cycle courses. In exceptional cases, a Part-time Lecturer can also be appointed as an examiner at both first- and second cycle, see Delegation of authority for the Board of Faculty of Science and Engineering.
Forms of examination
Principles for examination
Written and oral examinations and digital and computer-based examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the faculty programme board.
Principles for examination scheduling for courses that follow the study periods:
- courses given in VT1 are examined for the first time in March, with re-examination in June and August
- courses given in VT2 are examined for the first time in May, with re-examination in August and January
- courses given in HT1 are examined for the first time in October, with re-examination in January and August
- courses given in HT2 are examined for the first time in January, with re-examination in March and in August.
The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2).
Examinations for courses that the faculty programme board has decided are to be held in alternate years are held three times during the school year in which the course is given according to the principles stated above.
Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.
When a course, or a written or oral examination (TEN, DIT, DAT, MUN), is given for the last time, the regular examination and two re-examinations will be offered. Thereafter, examinations are phased out by offering three examinations during the following academic year at the same times as the examinations in any substitute course. If there is no substitute course, three examinations will be offered during re-examination periods during the following academic year. Other examination times are decided by the faculty programme board. In all cases above, the examination is also offered one more time during the academic year after the following, unless the faculty programme board decides otherwise. In total, 6 re-examinations are offered, of which 2 are regular re-examinations. In the examination registration system, the examinations given for the penultimate time and the last time are denoted.
If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the faculty programme board or boards determine together the scheduling and frequency of re-examination occasions.
For single subject courses, written and oral examinations can be held at other times.
Retakes of other forms of examination
Regulations concerning retakes of other forms of examination than written examinations and digital and computer-based examinations are given in the LiU guidelines for examinations and examiners, Dnr LiU-2023-00379 (http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).
Course closure
For Decision on Routines for Administration of the Discontinuation of Educational Programs, Freestanding Courses and Courses in Programs, see Dnr LiU-2021-04782 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/1156410). After a decision on closure and after the end of the discontinuation period, the students are referred to a replacement course (or similar) according to information in the course syllabus or programme syllabus. If a student has passed some part/parts of a closed program course but not all, and there is an at least partially replacing course, an assessment of crediting can be made. Any crediting of course components is made by the examiner.
Registration for examination
In order to take an written, digital or computer-based examination, registration in advance is mandatory, see decision in the university’s rule book Dnr LiU-2020-04559 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622682). An unregistered student can thus not be offered a place. The registration is done at the Student Portal or in the LiU-app during the registration period. The registration period opens 30 days before the date of the examination and closes 10 days before the date of the examination. Candidates are informed of the location of the examination by email, four days in advance.
Code of conduct for students during examinations
Details are given in a decision in the university’s rule book, Dnr LiU-2020-04559 (http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682).
Retakes for higher grade
Students at the Institute of Technology at LiU have the right to retake written examinations and digital and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN”, “DIT” and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.
A retake is not possible on courses that are included in an issued degree diploma.
Grades
The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5).
- Grades U, 3, 4, 5 are to be awarded for courses that have written or digital examinations.
- Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.
- Grades Fail (U) and Pass (G) are to be used for degree projects and other independent work.
Examination components
The following examination components and associated module codes are used at the Faculty of Science and Engineering:
- Grades U, 3, 4, 5 are to be awarded for written examinations (TEN) and digital examinations (DIT).
- Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), digital preparatory written examination (DIK), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
- Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as tutorial group (BAS) or examination item (MOM).
- Grades Fail (U) and Pass (G) are to be used for the examination components Opposition (OPPO) and Attendance at thesis presentation (AUSK) (i.e. part of the degree project).
In general, the following applies:
- Mandatory course components must be scored and given a module code.
- Examination components that are not scored, cannot be mandatory. Hence, it is voluntary to participate in these examinations, and the voluntariness must be clearly stated. Additionally, if there are any associated conditions to the examination component, these must be clearly stated as well.
- For courses with more than one examination component with grades U,3,4,5, it shall be clearly stated how the final grade is weighted.
For mandatory components, the following applies (in accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, Dnr LiU-2023-00379 http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592):
- If special circumstances prevail, and if it is possible with consideration of the nature of the compulsory component, the examiner may decide to replace the compulsory component with another equivalent component.
For possibilities to alternative forms of examinations, the following applies (in accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, Dnr LiU-2023-00379 http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592):
- If the LiU coordinator for students with disabilities has granted a student the right to an adapted examination for a written examination in an examination hall, the student has the right to it.
- If the coordinator has recommended for the student an adapted examination or alternative form of examination, the examiner may grant this if the examiner assesses that it is possible, based on consideration of the course objectives.
- An examiner may also decide that an adapted examination or alternative form of examination if the examiner assessed that special circumstances prevail, and the examiner assesses that it is possible while maintaing the objectives of the course.
Reporting of examination results
The examination results for a student are reported at the relevant department.
Plagiarism
For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations, such as degree projects, project reports, etc. (this is sometimes known as “self-plagiarism”).
A failure to specify such sources may be regarded as attempted deception during examination.
Attempts to cheat
In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at Cheating, deception and plagiarism.
Linköping University has also produced a guide for teachers and students' use of generative AI in education (Dnr LiU-2023-02660). As a student, you are always expected to gain knowledge of what applies to each course (including the degree project). In general, clarity to where and how generative AI has been used is important.
Regulations (apply to LiU in its entirety)
The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.
LiU’s rule book for education at first-cycle and second-cycle levels is available at https://styrdokument.liu.se/Regelsamling/Innehall.
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (courses on G1X-level) |
X
|
X
|
|
LAB1
|
||
1.2 Fundamental engineering knowledge (courses on G1X-level) |
X
|
X
|
|
|||
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level) |
X
|
X
|
X
|
LAB1
|
||
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
|
X
|
X
|
LAB1
|
||
2.2 Experimentation, investigation, and knowledge discovery |
|
X
|
X
|
LAB1
|
||
2.3 System thinking |
X
|
X
|
|
LAB1
|
||
2.4 Attitudes, thought, and learning |
X
|
X
|
X
|
LAB1
|
||
2.5 Ethics, equity, and other responsibilities |
X
|
X
|
|
LAB1
|
||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
X
|
X
|
X
|
LAB1
|
||
3.2 Communications |
X
|
X
|
X
|
LAB1
|
||
3.3 Communication in foreign languages |
|
|
X
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 Societal conditions, including economically, socially and ecologically sustainable development |
X
|
X
|
X
|
|||
4.2 Enterprise and business context |
X
|
|
|
|||
4.3 Conceiving, system engineering and management |
|
|
|
|||
4.4 Designing |
|
|
|
|||
4.5 Implementing |
|
|
|
|||
4.6 Operating |
X
|
X
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects |
|
|
|
|||
5.2 Economic conditions for research and development projects |
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
|
|
|
|||
5.4 Execution of research or development projects |
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.