

Battery Systems

Batterisystem 6 credits

Programme course

TSFS19

Valid from: 2026 Spring semester

Determined by	Main field of study		
Board of Studies for Mechanical Engineering and Design	Electrical Engineering, Mechanical Engineering		
Date determined	Course level	Progressive specialisation	
2025-08-28	Second cycle	A1N	
Revised by	Disciplinary domain		
	Technology		
Revision date	Subject group		
	Electrical Engineer	ring	
Offered first time	Offered for the last time		
Spring semester 2025			
Department	Replaced by		
Institutionen för systemteknik			

Course offered for

- Master of Science in Applied Physics and Electrical Engineering -International
- Master of Science in Computer Science and Engineering
- Master of Science in Energy Environment Management
- Master of Science in Mechanical Engineering
- Master of Science in Applied Physics and Electrical Engineering
- Master's Programme in Mechanical Engineering
- Master of Science in Industrial Engineering and Management

Prerequisites

Introductory courses in electricity, automatic control, mathematical programming, and probability theory.

Intended learning outcomes

An overarching goal is to be able to solve systems engineering problems for battery systems. After completing the course, the student should be able to:

- Describe and perform basic calculations for battery systems' construction, function, safety, and reliability.
- Mathematically model, parameterize, and simulate batteries.
- Implement and evaluate battery management system functions.

Course content

- Introduction of battery cells and battery systems.
- Physical principles of battery function, with a focus on Li-ion cells.
- Basic properties and characterization of battery cells.
- Standardized cell tests for performance evaluation.
- Mathematical modeling of cells with a focus on circuit-equivalent models.
- Parameterization of battery models for adaptation to measurement data.
- Simulation of battery models in typical operating conditions.
- Charging strategies.
- Fundamental functions of the battery management system (BMS).
- State-of-charge (SOC) estimation.
- Cell balancing.
- Aging phenomena, battery health, and sustainability.
- Voltage and power limitations.

Teaching and working methods

The course consists of lectures, lessons, laboratory work, and a written examination.

TEN ₁	Written Examination	4 credits	U, 3, 4, 5
LAB1	Laboratory Work	2 credits	U, G

Grades for examination modules are decided in accordance with the assessment criteria presented at the start of the course.

Grades

Four-grade scale, LiU, U, 3, 4, 5

Other information

About teaching and examination language

The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows:

- If teaching language is "Swedish", the course as a whole could be given in Swedish, or partly in English. Examination language is Swedish, but parts of the examination can be in English.
- If teaching language is "English", the course as a whole is taught in English. Examination language is English.
- If teaching language is "Swedish/English", the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English depending on teaching language.

Other

The course is conducted in such a way that there are equal opportunities with regard to sex, transgender identity or expression, ethnicity, religion or other belief, disability, sexual orientation and age.

The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point.

The course is campus-based at the location specified for the course, unless otherwise stated under "Teaching and working methods". Please note, in a campus-based course occasional remote sessions could be included.

