

Sensor Array Systems

Sensorsystem 6 credits

Programme course

TSKS17

Valid from:

Determined by	Main field of study Electrical Engineering		
Date determined	Course level	Progressive specialisation	
	Second cycle	A1N	
Revised by	Disciplinary domain		
	Information missin	tion missing	
Revision date	Subject group		
Offered first time	Offered for the last time		
2026			
Department	Replaced by		
Institutionen för systemteknik			

Course offered for

- Master of Science in Applied Physics and Electrical Engineering International
- Master of Science in Applied Physics and Electrical Engineering
- Master's Programme in Data Science and Information Engineering
- Master of Science in Electronics Design Engineering

Prerequisites

Linear algebra, basic probability theory, a related course on signals and systems, programming skills.

Intended learning outcomes

After passing the course, students should be able to:

- Explain, describe, or summarize fundamental concepts related to sensor array systems, including principles of radar systems and advanced topics on MIMO radars and SARs, and techniques related to array signal processing.
- Critically think, interpret, and apply the concepts related to sensor array systems to fictional or real-world problems and perform related calculations.
- Formulate original algorithmic solutions for problems related to the course contents and implement those in conventional programming language and be able to explain and report.

Course content

Part I: Sensor array systems

- Introduction to sensor array systems and applications.
- Radar system principles: The radar concept, basic radar configurations and waveforms, basic radar measurements and functions, the radar range equation.
- Propagation effects and mechanisms, characteristics of clutter, target reflectivity, and fluctuating models.
- Radar subsystems: Antennas, transmitters, receivers, exciters, and signal processor.
- Radar measurements: Time delay and range estimation, angle estimation, and angle-Dopppler estimation using array measurements.
- Advanced topics: MIMO radar and synthetic aperture radar (SAR).

Part II: Array signal processing

- Overview of wavefields and wave propagation
- Spatial processing techniques: Aperture and arrays, parametric and nonparametric, beamforming, subspace-based methods.
- Adaptive array processing techniques.

Teaching and working methods

Teaching is given as lectures, tutorials, and laboratory project.

Examination

TEN1	Written examination	4 credits	U, 3, 4, 5
LAB1	Laboratory work	2 credits	U, G

Grades

Four-grade scale, LiU, U, 3, 4, 5

