Optimization for IT Programme course 8 credits Optimering för IT **TAOP89** Valid from: 2020 Spring semester **Determined by**Board of Studies for Computer Science and Media Technology **Date determined** 2019-09-23 # Main field of study Mathematics, Applied Mathematics # Course level First cycle ### Advancement level G2X ### Course offered for • Master of Science in Information Technology # Specific information Is not allowed in the diploma together with TAOP33. # **Entry requirements** Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding. ## **Prerequisites** Linear algebra, Discrete structures, Data structures and algorithms # Intended learning outcomes The course deals with mathematical tools for formulating, solving and analyzing combinatorial optimization problems, often based on different network and graph structures. Sustainable development and environmental aspects are prominent aspects in the applications that are discussed. An important point is the ability to choose and use the most efficient algorithm for each specific problem structure. The algorithms are intended to be suitable for large scale problems and implementation on computer. After finishing the course, the student shall be able to: - describe important types of combinatorial optimization problems. - formulate combinatorial optimization problems as mathematical models, possibly with graph terminology, and determine the difficulty of the problems with the help of complexity theory. - explain the design of and the principles behind efficient solution methods and choose and use the methods for solving different types of combinatorial optimization problems. - use available software for solving optimization problems. - take part of development of software for optimization problems. - develop heuristics for certain structured combinatorial optimization problems. - explain and use basic concepts, such as local and global optimality, convexity, extreme point, complexity, duality, heuristic, branch-and-bound, cutting planes, and basic graph theory, especially trees and cycles of different kinds. - give examples of how combinatorial optimization can be used to promote sustainable development and improve the environment. - independently and in a group, identify learning needs in relation to given problems related to the courses of this semester. - collaborate with colleagues both in learning and problem solving, and lead technical problem solving situations related to the courses of this semester. - contribute to discussions and results in a PBL-group. ### Course content Introduction to optimization, problem formulation, graphical solution, computational complexity, problem complexity. The simplex method, linear duality and sensitivity analysis. Basic graph theory and overview of different optimization problems in graphs. Models and methods for finding minimal spanning tree, minimum cost traveling salesman tour, minimum cost postman tour, shortest path, minimum cost assignment, minimum cost flow and maximal flow. Methods for integer programming, especially branch-and-bound, cutting planes and dynamic programming. Heuristics for hard combinatorial optimization problems. Examples on applications that concern different aspects within sustainable development, for instance concerning a scenario that is common for several courses. # Teaching and working methods The course is given as seminars, computer exercises and work in PBL groups. The seminars can be seen as a mixture of lectures and exercises, and treats theory, methods and models. Time is also spend on exercises in model formulation and problem solving. The computer exercises contain both implementation of optimization algorithms and solution of combinatorial optimization problems with the help of available software. ### **Examination** | BAS ₁ | Work in PBL group | 2 credits | U, G | |------------------|---------------------|-----------|------------| | LAB1 | Lab work | 2 credits | U, G | | TEN ₁ | Written examination | 4 credits | U, 3, 4, 5 | ### Grades Four-grade scale, LiU, U, 3, 4, 5 ### Other information ### About teaching and examination language The teaching language is presented in the Overview tab for each course. The examination language relates to the teaching language as follows: - If teaching language is Swedish, the course as a whole or in large parts, is taught in Swedish. Please note that although teaching language is Swedish, parts of the course could be given in English. Examination language is Swedish. - If teaching language is Swedish/English, the course as a whole will be taught in English if students without prior knowledge of the Swedish language participate. Examination language is Swedish or English (depending on teaching language). - If teaching language is English, the course as a whole is taught in English. Examination language is English. #### Other The course is conducted in a manner where both men's and women's experience and knowledge are made visible and developed. The planning and implementation of a course should correspond to the course syllabus. The course evaluation should therefore be conducted with the course syllabus as a starting point. # Department Matematiska institutionen # Director of Studies or equivalent Nils-Hassan Quttineh ### **Examiner** Kaj Holmberg # Course website and other links http://courses.mai.liu.se/GU/TAOP86 # **Education components** Preliminary scheduled hours: 68 h Recommended self-study hours: 145 h ### Course literature #### **Books** Holmberg, Kaj, (2018) Optimering 2. uppl. Stockholm: Liber, 2018 ISBN: 978-91-47-12578-4 ### **Common rules** ### **Course syllabus** A syllabus must be established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course. ### **Timetabling** Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. ### Interrupting a course The vice-chancellor's decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: https://www.lith.liu.se/for-studenter/kurskomplettering?l=en. #### **Cancelled courses** Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The Dean is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. #### **Guidelines relating to examinations and examiners** For details, see Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592. An examiner must be employed as a teacher at LiU according to the LiU Regulations for Appointments (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622784). For courses in second-cycle, the following teachers can be appointed as examiner: Professor (including Adjunct and Visiting Professor), Associate Professor (including Adjunct), Senior Lecturer (including Adjunct and Visiting Senior Lecturer), Research Fellow, or Postdoc. For courses in first-cycle, Assistant Lecturer (including Adjunct and Visiting Assistant Lecturer) can also be appointed as examiner in addition to those listed for second-cycle courses. In exceptional cases, a Part-time Lecturer can also be appointed as an examiner at both first- and second cycle, see Delegation of authority for the Board of Faculty of Science and Engineering. #### Forms of examination #### **Examination** Written and oral examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies. Principles for examination scheduling for courses that follow the study periods: - courses given in VT1 are examined for the first time in March, with reexamination in June and August - courses given in VT2 are examined for the first time in May, with reexamination in August and October - courses given in HT1 are examined for the first time in October, with reexamination in January and August - courses given in HT2 are examined for the first time in January, with reexamination in March and in August. The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2). Examinations for courses that the board of studies has decided are to be held in alternate years are held three times during the school year in which the course is given according to the principles stated above. Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled. When a course is given for the last time, the regular examination and two reexaminations will be offered. Thereafter, examinations are phased out by offering three examinations during the following academic year at the same times as the examinations in any substitute course. If there is no substitute course, three examinations will be offered during re-examination periods during the following academic year. Other examination times are decided by the board of studies. In all cases above, the examination is also offered one more time during the academic year after the following, unless the board of studies decides otherwise. If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the board or boards of studies determine together the scheduling and frequency of re-examination occasions. #### **Registration for examination** In order to take an examination, a student must register in advance at the Student Portal during the registration period, which opens 30 days before the date of the examination and closes 10 days before it. Candidates are informed of the location of the examination by email, four days in advance. Students who have not registered for an examination run the risk of being refused admittance to the examination, if space is not available. Symbols used in the examination registration system: - ** denotes that the examination is being given for the penultimate time. - * denotes that the examination is being given for the last time. #### Code of conduct for students during examinations Details are given in a decision in the university's rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682. #### Retakes for higher grade Students at the Institute of Technology at LiU have the right to retake written examinations and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code "TEN" and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus. A retake is not possible on courses that are included in an issued degree diploma. #### Retakes of other forms of examination Regulations concerning retakes of other forms of examination than written examinations and computer-based examinations are given in the LiU guidelines for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592. #### **Plagiarism** For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations, such as degree projects, project reports, etc. (this is sometimes known as "self-plagiarism"). A failure to specify such sources may be regarded as attempted deception during examination. #### Attempts to cheat In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=en. #### **Grades** The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). - 1. Grades U, 3, 4, 5 are to be awarded for courses that have written examinations. - 2. Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work. - 3. Grades Fail (U) and Pass (G) are to be used for degree projects and other independent work. #### **Examination components** - 1. Grades U, 3, 4, 5 are to be awarded for written examinations (TEN). - 2. Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG). - 3. Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as other examination (ANN), tutorial group (BAS) or examination item (MOM). - 4. Grades Fail (U) and Pass (G) are to be used for the examination components Opposition (OPPO) and Attendance at thesis presentation (AUSK) (i.e. part of the degree project). For mandatory components, the following applies: If special circumstances prevail, and if it is possible with consideration of the nature of the compulsory component, the examiner may decide to replace the compulsory component with another equivalent component. (In accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592). For written examinations, the following applies: If the LiU coordinator for students with disabilities has granted a student the right to an adapted examination for a written examination in an examination hall, the student has the right to it. If the coordinator has instead recommended for the student an adapted examination or alternative form of examination, the examiner may grant this if the examiner assesses that it is possible, based on consideration of the course objectives. (In accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592). The examination results for a student are reported at the relevant department. ### Regulations (apply to LiU in its entirety) The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards. LiU's rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund_och_avancerad_niva.