Medical Image Analysis

Programme course

6 credits
Medicinsk bildanalys
TBMI02
Valid from: 2019 Spring semester

Determined by
Board of Studies for Electrical Engineering, Physics and Mathematics

Date determined
2018-08-31
Main field of study
Electrical Engineering, Biomedical Engineering

Course level
Second cycle

Advancement level
A1X

Course offered for
- Master's Programme in Biomedical Engineering
- Information Technology, M Sc in Engineering
- Computer Science and Engineering, M Sc in Engineering
- Biomedical Engineering, M Sc in Engineering
- Computer Science and Software Engineering, M Sc in Engineering
- Applied Physics and Electrical Engineering - International, M Sc in Engineering
- Applied Physics and Electrical Engineering, M Sc in Engineering

Entry requirements
Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.

Prerequisites
Basic Linear Algebra: bases, scalar product, least squares problem, eigenvalue problems. Basic signal processing (corresponding to Linear Systems): sampling, convolution and Fourier transform of one-variable signals. Basic skills in Matlab is recommended.
Intended learning outcomes
The aim of the course is to give profound knowledge of how different medical images, volumes and sequences are generated and analyzed. Focus is especially on techniques and methods related to magnetic resonance tomography (MRT). A central part of the course is devoted to the design of multi dimensional filters and algorithms for the purpose of extracting different types of information from the medical data sets. After the course the student will be able to:

- Be able to optimize multi dimensional filters with respect to both frequency and spatial requirements.
- Compute local structure descriptors (Tensors) from image data.
- Use the local structure description to perform adaptive image enhancement.
- Describe image segmentation methods as: watershed, levelsets, and region growing. Implement a segmentation algorithm using active contours.
- Describe transformations and similarity measures for registration/fusion of images. Be able to implement a simple registration.
- Explain the behavior of multi-dimensional signals in the Fourier domain.
- In detail tell how the MRI data are sampled in k-space, and how to avoid related sampling problems.

Course content
Medical imaging systems: Physical principles and image reconstruction algorithms for magnetic resonance tomography (MRI), ultrasound and computer tomography (CT). Analysis methods: Multidimensional Fourier analysis, local structure analysis in 2D, 3D and 4D (3D + time), motion/velocity estimation, registration, segmentation using adaptive contours and surfaces. Applications: Image enhancement, image registration, functional magnetic resonance imaging (fMRI).

Teaching and working methods
The course consists of lectures, laboratory exercises and a mini project. Lab exercises and the mini project are done in groups of 2 students. Lab exercises are presented orally at scheduled seminars. The mini project consists of 3 scheduled lab sessions and is presented in a written report. To pass the laboratory work you have to show the working code for the lab instructor, participate in the lab seminars and present the written mini project report.

Examination

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEN2</td>
<td>Written Examination</td>
<td>4</td>
<td>U, 3, 4, 5</td>
</tr>
<tr>
<td>LAB1</td>
<td>Laboratory Work</td>
<td>2</td>
<td>U, G</td>
</tr>
</tbody>
</table>

Grades

Four-grade scale, LiU, U, 3, 4, 5
Other information
Supplementary courses:
- Multidimensional Signal Analysis
- Computer Vision
- Medical Imaging
- Neural Networks and Learning Systems

Department
Institutionen för medicinsk teknik

Director of Studies or equivalent
Marcus Larsson

Examiner
Anders Eklund

Education components
Preliminary scheduled hours: 48 h
Recommended self-study hours: 112 h

Course literature

Books
Granlund, Gösta, Knutsson, Hans, (1995) *Signal processing for computer vision*
Dordrecht : Kluwer, cop. 1995
ISBN: 0792395301

Compendia
A. Eklund, M. Andersson, H. Knutsson., Kompendium om MR, registrering och segmentering. IMT 2010

Other
Utdelat material
Common rules

Course syllabus
A syllabus has been established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Timetabling
Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. A central timetable is not drawn up for courses with fewer than five participants. Most project courses do not have a central timetable.

Interrupting a course
The vice-chancellor’s decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: www.lith.liu.se/for-studenter/kurskomplettering?l=sv.

Cancelled courses
Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The board of studies is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus.

Regulations relating to examinations and examiners
Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Forms of examination

Examination
Written and oral examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies.

Principles for examination scheduling for courses that follow the study periods:
- courses given in VT1 are examined for the first time in March, with re-
examination in June and August
• courses given in VT2 are examined for the first time in May, with re-
examination in August and October
• courses given in HT1 are examined for the first time in October, with re-
examination in January and August
• courses given in HT2 are examined for the first time in January, with re-
examination at Easter and in August.

The examination schedule is based on the structure of timetable modules, but
there may be deviations from this, mainly in the case of courses that are studied
and examined for several programmes and in lower grades (i.e. 1 and 2).

• Examinations for courses that the board of studies has decided are to be
held in alternate years are held only three times during the year in which
the course is given.
• Examinations for courses that are cancelled or rescheduled such that they
are not given in one or several years are held three times during the year
that immediately follows the course, with examination scheduling that
corresponds to the scheduling that was in force before the course was
cancelled or rescheduled.
• If teaching is no longer given for a course, three examination occurrences
are held during the immediately subsequent year, while examinations are at
the same time held for any replacement course that is given, or alternatively
in association with other re-examination opportunities. Furthermore, an
examination is held on one further occasion during the next subsequent
year, unless the board of studies determines otherwise.
• If a course is given during several periods of the year (for programmes, or
on different occasions for different programmes) the board or boards of
studies determine together the scheduling and frequency of re-examination
occasions.

Registration for examination

In order to take an examination, a student must register in advance at the Student
Portal during the registration period, which opens 30 days before the date of the
examination and closes 10 days before it. Candidates are informed of the location
of the examination by email, four days in advance. Students who have not
registered for an examination run the risk of being refused admittance to the
examination, if space is not available.

Symbols used in the examination registration system:

** denotes that the examination is being given for the penultimate time.
*
denotes that the examination is being given for the last time.

Code of conduct for students during examinations

Details are given in a decision in the university’s rule book:

Retakes for higher grade
Students at the Institute of Technology at LiU have the right to retake written examinations and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN” and “DAT”. The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

Retakes of other forms of examination
Regulations concerning retakes of other forms of examination than written examinations and computer-based examinations are given in the LiU regulations for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Plagiarism
For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations.

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat
In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=sv.

Grades
The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). Courses under the auspices of the faculty board of the Faculty of Science and Engineering (Institute of Technology) are to be given special attention in this regard.

1. Grades U, 3, 4, 5 are to be awarded for courses that have written examinations.
2. Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.

Examination components
1. Grades U, 3, 4, 5 are to be awarded for written examinations (TEN).
2. Grades Fail (U) and Pass (G) are to be used for undergraduate projects and other independent work.
3. Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).

4. Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as other examination (ANN), tutorial group (BAS) or examination item (MOM).

The examination results for a student are reported at the relevant department.

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.