Thermodynamics and Statistical Mechanics Programme course 6 credits Termodynamik och statistisk mekanik TFYA12 Valid from: 2017 Spring semester **Determined by** Board of Studies for Electrical Engineering, Physics and Mathematics **Date determined** 2017-01-25 # Main field of study Applied Physics, Physics ## Course level First cycle ## Advancement level G2X ### Course offered for - Applied Physics and Electrical Engineering International, M Sc in Engineering - Applied Physics and Electrical Engineering, M Sc in Engineering - Physics, Bachelor's Programme # **Entry requirements** Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding. # **Prerequisites** Calculus in one and several variables # Intended learning outcomes The general aim of the statistical mechanics part of the course is that the student equipped with a quantum mechanical description of physical systems on a microscopic level and guided by the principle of entropy maximization - can derive equilibrium features of macroscopic systems that apply to thermodynamics, medicine, metallurgy, chemistry and semiconductor physics. This means that the student should be able to: - construct idealized models for microscopic systems and calculate equilibrium features under different circumstance, i.e. given temperature, chemical potential or energy - give an account of the reasoning and/or derivations in statistical mechanics and describe the connection between the basic concepts of the theory - use the statistical mechanics results for problem solving in thermodynamics, medicine, metallurgy, chemistry and semiconductor physics. #### Course content The statistical definitions of entropy, temperature, pressure and chemical potential constitutes the starting point. Other concepts that are presented is: multiplicity, ensemble average, specific heat, Boltzmann factor, partition function, thermodynamic identity, Helmholtz free energy, classical ideal gas, quantum concentration, Sackur-Tetrodes equation, Planck radiation law, Stefan-Boltzmanns law, emissivity, photon gas, greenhouse effect, heat shields, internal and external chemical potential, Gibbs factor, Gibbs sum (grand partition function), absolute activity, Langmuir adsorption isotherm, orbital, Pauli exclusion principle, Fermi-Dirac distribution, Bose-Einstein distribution, internal partition function, reversibility, free electron model, density of states, chemical potential as a normalizing constant, heat, work, heat engine, refrigerator, heat pump, Carnot process, adiabatic process, isothermal process, Gibbs free energy, law of mass action, phase transformation, Clausius-Clapeyron equation, van der Waals equation. # Teaching and working methods The course is presented in lectures and problem solving lessons. #### Examination TEN1 Written examination 6 credits U, 3, 4, 5 ## Grades Four-grade scale, LiU, U, 3, 4, 5 # Department Institutionen för fysik, kemi och biologi # Director of Studies or equivalent Magnus Johansson #### Examiner Peter Münger ### Course website and other links # **Education components** Preliminary scheduled hours: 52 h Recommended self-study hours: 108 h # Course literature #### **Additional literature** #### **Books** David Goodstein, (2015) *Thermal physics Energy and Entropy* 1 Cambridge University Press ISBN: 978-1-107-46549-7 #### Compendia E. Peter Münger, Läs- och räkneråd för kursen termodynamik och statistisk mekanik ## **Common rules** Regulations (apply to LiU in its entirety) The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards. LiU's rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund_och_avancerad_niva.