

Model-based System-of-Systems Engineering

Programme course

6 credits

Modellbaserad utveckling av system-av-system

TMKA11

Valid from: 2021 Spring semester

Determined by Board of Studies for Mechanical Engineering and Design

Date determined 2020-09-29

Main field of study

Mechanical Engineering

Course level

Second cycle

Advancement level

A₁X

Course offered for

- Mechanical Engineering, M Sc in Engineering
- Master of Science in Mechanical Engineering
- Energy Environment Management, M Sc in Engineering
- Master of Science in Design and Product Development
- Master's Programme in Sustainability Engineering and Management
- Master's Programme in Mechanical Engineering
- Master's Programme in Aeronautical Engineering
- Master of Science in Industrial Engineering and Management
- Industrial Engineering and Management, M Sc in Engineering
- Master of Science in Industrial Engineering and Management International
- Industrial Engineering and Management International, M Sc in Engineering

Prerequisites

The course assumes that the student meets the requirements for studies in the higher levels of the engineering programs, and has good knowledge of mathematics as well as basic programming. The course is open to students from different backgrounds, and it is assumed that the student has good knowledge of general development methodology in his/her own subject area as well as specific technical knowledge corresponding to the last semester of the respective engineering program.

Intended learning outcomes

After completing the course, participants will have a good understanding of how System of Systems (SoS) can be studied, created, and used with the help of concepts, technics, and methods within the field of model-based engineering. In addition to this, students will:

- Understand what defines a system and get an overview of the traditional systems engineering field.
- Understand what characterizes an SoS and its unique properties.
- Get an overview of various approaches, tools, and methods that are used to analyze an SoS.
- Be able to use model-based tools for modeling and evaluating SoS.
- Be able to create and work with various system models for analyzing an SoS.
- Be able to apply knowledge and methods within SoS engineering on a project in order to study SoS properties.

Course content

Today's products are becoming increasingly complex, while at the same time, they are extending to several disciplinary domains. Therefore, we need to develop new ways that allow designers to take into account the effects of collaboration, instead of just focusing on the optimization of one system at a time. The study of SoS is a research area that brings together systems, organization, operating environment, and management in one single picture with the purpose of exploring the design space. The course will include the following parts:

- Systems Engineering processes from subsystem development to the life cycle perspective.
- System properties and balancing between different requirements and disciplines.
- Concepts, terminology, and methods for developing and studying SoS.
- Analysis, modeling, and simulation of SoS.
- Introduction to Agent-Based Simulations (ABS) as a tool for analyzing SoS.

Teaching and working methods

- Lectures presenting basic theoretical concepts.
- Guest lecturers from leading companies and research institutes.
- Computer labs where students apply methods and models in the study of SoS.
- Seminars where student groups read, summarize, and present scientific articles within various SoS research topics.

4 (10)

Examination

PRA2	Project work	3 credits	U, 3, 4, 5
UPG1	Hand-in assignments	3 credits	U, 3, 4, 5

The students will be asked to work on a project where they will analyze the properties of an existing SoS. The results shall be presented in a report as well as orally in a seminar.

In addition to this, the students will be asked to enrich their knowledge of a specific SoS research topic and present their results in a seminar as well as in the form of a report.

For a passing grade, both PRA2 and UPG must be successfully completed. PRA2 contributes 60% to the final grade and UPG1 contributes 40%.

Grades

Four-grade scale, LiU, U, 3, 4, 5

Department

Institutionen för ekonomisk och industriell utveckling

Director of Studies or equivalent

Mats Nåbo

Examiner

Athanasios Papageorgiou

Education components

Preliminary scheduled hours: 60 h Recommended self-study hours: 100 h

Course literature

Regulary literature

Articles

The course literature consists of scientific articles in support of the theoretical lectures. The students will be given a list of scientific publications to read before the seminar discussions. Students are also encouraged to actively seek additional material on their own.

The course literature consists of scientific articles in support of the theoretical lectures. Students are also encouraged to actively seek additional material on their own.

Other

Additional literature

Other

The book "Modeling and Simulation Support for System of Systems Engineering Applications" by Larry B. Rainey and Andreas Tolk is recommended as an additional support.

Common rules

Course syllabus

A syllabus must be established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Timetabling

Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module.

Interrupting a course

The vice-chancellor's decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: https://www.lith.liu.se/for-studenter/kurskomplettering?l=en.

Cancelled courses

Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The Dean is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus.

Guidelines relating to examinations and examiners

For details, see Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, Dnr LiU-2019-00920 (http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).

An examiner must be employed as a teacher at LiU according to the LiU Regulations for Appointments, Dnr LiU-2017-03931 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622784). For courses in second-cycle, the following teachers can be appointed as examiner: Professor (including Adjunct and Visiting Professor), Associate Professor (including Adjunct), Senior Lecturer (including Adjunct and Visiting Senior Lecturer), Research Fellow, or Postdoc. For courses in first-cycle, Assistant Lecturer (including Adjunct and Visiting Assistant Lecturer) can also be appointed as examiner in addition to those listed for second-cycle courses. In exceptional cases, a Part-time Lecturer can also be appointed as an examiner at both first- and second cycle, see Delegation of authority for the Board of Faculty of Science and Engineering.

Forms of examination

Principles for examination

Written and oral examinations and digital and computer-based examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies.

Principles for examination scheduling for courses that follow the study periods:

- courses given in VT1 are examined for the first time in March, with reexamination in June and August
- courses given in VT2 are examined for the first time in May, with reexamination in August and October
- courses given in HT1 are examined for the first time in October, with reexamination in January and August
- courses given in HT2 are examined for the first time in January, with reexamination in March and in August.

The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2).

Examinations for courses that the board of studies has decided are to be held in alternate years are held three times during the school year in which the course is given according to the principles stated above.

Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.

When a course is given for the last time, the regular examination and two reexaminations will be offered. Thereafter, examinations are phased out by offering three examinations during the following academic year at the same times as the examinations in any substitute course. If there is no substitute course, three examinations will be offered during re-examination periods during the following academic year. Other examination times are decided by the board of studies. In all cases above, the examination is also offered one more time during the academic year after the following, unless the board of studies decides otherwise.

If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the board or boards of studies determine together the scheduling and frequency of re-examination occasions.

Retakes of other forms of examination

Regulations concerning retakes of other forms of examination than written examinations and digital and computer-based examinations are given in the LiU guidelines for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592.

Registration for examination

Until January 31 2021, the following applies according to previous guidelines: In order to take an written, digital or computer-based examination student must register in advance at the Student Portal during the registration period, which opens 30 days before the date of the examination and closes 10 days before it. Candidates are informed of the location of the examination by email, four days in advance. Students who have not registered for an examination run the risk of being refused admittance to the examination, if space is not available.

From February 1 2021, new guidelines applies for registration for written, digital or computer-based examination, Dnr LiU-2020-02033 (https://styrdokument.liu.se/Regelsamling/VisaBeslut/622682).

Symbols used in the examination registration system:

- ** denotes that the examination is being given for the penultimate time.
- * denotes that the examination is being given for the last time.

Code of conduct for students during examinations

Details are given in a decision in the university's rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682.

Retakes for higher grade

Students at the Institute of Technology at LiU have the right to retake written examinations and digital and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code "TEN", "DIT" and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

A retake is not possible on courses that are included in an issued degree diploma.

Grades

The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5).

- Grades U, 3, 4, 5 are to be awarded for courses that have written or digital examinations.
- Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.
- Grades Fail (U) and Pass (G) are to be used for degree projects and other independent work.

Examination components

The following examination components and associated module codes are used at the Faculty of Science and Engineering:

• Grades U, 3, 4, 5 are to be awarded for written examinations (TEN) and

- digital examinations (DIT).
- Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), digital preparatory written examination (DIK), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
- Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as tutorial group (BAS) or examination item (MOM).
- Grades Fail (U) and Pass (G) are to be used for the examination components Opposition (OPPO) and Attendance at thesis presentation (AUSK) (i.e. part of the degree project).

In general, the following applies:

- Mandatory course components must be scored and given a module code.
- Examination components that are not scored, cannot be mandatory. Hence, it is voluntary to participate in these examinations, and the voluntariness must be clearly stated. Additionally, if there are any associated conditions to the examination component, these must be clearly stated as well.
- For courses with more than one examination component with grades U,3,4,5, it shall be clearly stated how the final grade is weighted.

For mandatory components, the following applies: If special circumstances prevail, and if it is possible with consideration of the nature of the compulsory component, the examiner may decide to replace the compulsory component with another equivalent component. (In accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University,

http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).

For written examinations, the following applies: If the LiU coordinator for students with disabilities has granted a student the right to an adapted examination for a written examination in an examination hall, the student has the right to it. If the coordinator has instead recommended for the student an adapted examination or alternative form of examination, the examiner may grant this if the examiner assesses that it is possible, based on consideration of the course objectives. (In accordance with the LiU Guidelines for education and examination for first-cycle and second-cycle education at Linköping University, http://styrdokument.liu.se/Regelsamling/VisaBeslut/917592).

Reporting of examination results

The examination results for a student are reported at the relevant department.

Plagiarism

For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance

10 (10)

with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations, such as degree projects, project reports, etc. (this is sometimes known as "self-plagiarism").

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat

In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=en.

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU's rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund_och_avancerad_niva.

