

Generative AI for Data Compression and Transmission

Generativ AI för datakompression och transmission 6 credits

Programme course

TSKS18

Valid from: 2026 Spring semester

Determined by	Main field of study	
	Electrical Engineering	
Date determined	Course level	Progressive specialisation
2025-08-28	Second cycle	A1F
Revised by	Disciplinary domain	
	Information missing	
Revision date	Subject group	
Offered first time	Offered for the last time	
Spring semester 2026		
Department	Replaced by	
Institutionen för systemteknik		

Course offered for

- Master of Science in Applied Physics and Electrical Engineering
- Master's Programme in Data Science and Information Engineering

Prerequisites

Calculus (e.g., differentiation and integration), linear algebra (e.g., matrix operations), and probability (e.g., random variables, central limit theorem) • A first course in machine learning, e.g., Machine Learning • Python programming skills, e.g., to train a machine learning model

Intended learning outcomes

After completing the course, the student should be able to:

- 1. explain theoretical foundations of deep generative modeling, including methods for modeling a density function, network structure, loss function, and training routines;
- 2. implement and train generative AI models to generate new data, and apply these models in a data compression and transmission system;
- 3. analyze and evaluate the effectiveness of a solution based on generative modeling for data compression and transmission;
- 4. reflect on implications and ethical considerations of using generative AI tools

Outcomes 1, 3, and 4 are fostered by the lectures and tutorieals, and assessed via the written examination. Outcomes 2 and 3 are fostered by lab sessions, and assessed via the lab reports. Outcome 4 is further fostered by peer assessment

Course content

This course provides an introduction to generative models, their applications to data compression and transmission, and their implications and ethical considerations. This includes: introduction to probabilistic generative modeling; generative models (including variational autoencoders, generative adversarial networks, diffusion models, flow-based models, energy-based models, transformers); frameworks and techniques for generative-AI-based data compression and transmission, including neural compression, rate-distortion-perception tradeoff, latent coding, joint source-channel coding; privacy, security, and ethical considerations of generative AI.

Examination

LAB1 Computer Based Laboratory Assignments 2 credits U, G
TEN1 Written Exam 4 credits U, 3, 4, 5

Grades

Four-grade scale, LiU, U, 3, 4, 5

