Classical Electrodynamics, 6 credits
Elektromagnetisk fältteori och vågutbredning, 6 hp
TFYY67
Main field of study
Applied Physics PhysicsCourse level
Second cycleCourse type
Programme courseExaminer
Ferenc TasnadiDirector of studies or equivalent
Magnus JohanssonEducation components
Preliminary scheduled hours: 40 hRecommended self-study hours: 120 h
Available for exchange students
YesMain field of study
Applied Physics, PhysicsCourse level
Second cycleAdvancement level
A1XCourse offered for
- Applied Physics and Electrical Engineering, M Sc in Engineering
- Physics and Nanoscience, Master's programme
- Materials Science and Nanotechnology, Master's programme
- Applied Physics and Electrical Engineering - International, M Sc in Engineering
Entry requirements
Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.
Prerequisites
Introductory course in electromagnetism, vector analysis, integral- and differential calculus in many variables, complex analysis, Fourier transformation.Intended learning outcomes
The course is intended to give a good knowledge about Maxwell’s equations, methods to solve these equations and various types of electromagnetic systems of interest for technological applications as well as from a fundamental point of view. The students are expected to attain a very deep and solid understanding of electromagnetism and to become well prepared for higher studies.
The learning goals are as follows:
- with the use of Maxwell’s equations on differential form be able so solve problems in electromagnetism.
- with the use of other basic, empirical, relations like the Biot Savart’s law or the generalized Coulomb’s law be able to determine the fields resulting from given sources in the form of charge or current densities.
- to be able to utilize the symmetry properties of the given problem to simplify the calculations.
- to be able to, in a proper way, use the material parameters, that modify the fields inside a medium compared to in vacuum.
Course content
Maxwell’s equations on differential form are derived and potentials are introduced. Fourier transforms are used extensively. Several different, complementary, methods are used to solve the Laplace and Poisson equations: separation of variables; conformal mapping; analytical functions; mirror images. Multipole expansions are discussed. The rest of the course can be divided into wave generation and wave propagation. In the first part the radiation from accelerating charges is treated. We introduce Lienard-Wichert potentials and antenna theory. We discuss how fields are generated in practical applications, like in the microwave oven. We study wave propagation in different materials and at interfaces, especially at metal surfaces. The concept electromagnetic normal mode is introduced. These normal modes are used to find the van-de-Waals and Casimir forces between objects. To link to one of the research fronts these techniques are applied to graphene. Finally, relativistic electrodynamics is treated and 4-vectors are introduced.
Teaching and working methods
Seminars presenting theory and problem solving sessions.
Examination
UPG1 | Optional homework problems | 0 credits | U, G |
TENA | Exercise/Written Examination | 6 credits | U, 3, 4, 5 |
Grades
Four-grade scale, LiU, U, 3, 4, 5Department
Institutionen för fysik, kemi och biologiDirector of Studies or equivalent
Magnus JohanssonExaminer
Ferenc TasnadiEducation components
Preliminary scheduled hours: 40 hRecommended self-study hours: 120 h
Course literature
David J. Griffiths, Introduction to Electrodynamics, Addison-Wesley.Code | Name | Scope | Grading scale |
---|---|---|---|
UPG1 | Optional homework problems | 0 credits | U, G |
TENA | Exercise/Written Examination | 6 credits | U, 3, 4, 5 |
Regulations (apply to LiU in its entirety)
The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.
LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.
Note: The course matrix might contain more information in Swedish.
I | U | A | Modules | Comment | ||
---|---|---|---|---|---|---|
1. DISCIPLINARY KNOWLEDGE AND REASONING | ||||||
1.1 Knowledge of underlying mathematics and science (courses on G1X-level) |
X
|
X
|
X
|
|||
1.2 Fundamental engineering knowledge (courses on G1X-level) |
X
|
X
|
X
|
|||
1.3 Further knowledge, methods and tools in any of : mathematics, natural sciences, technology (courses at G2X level) |
|
X
|
X
|
|||
1.4 Advanced knowledge, methods and tools in any of: mathematics, natural sciences, technology (courses at A1X level) |
|
|
|
|||
1.5 Insight into current research and development work |
|
|
|
|||
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES | ||||||
2.1 Analytical reasoning and problem solving |
X
|
X
|
X
|
|||
2.2 Experimentation, investigation, and knowledge discovery |
|
|
|
|||
2.3 System thinking |
|
X
|
X
|
|||
2.4 Attitudes, thought, and learning |
X
|
X
|
X
|
|||
2.5 Ethics, equity, and other responsibilities |
X
|
X
|
X
|
|||
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION | ||||||
3.1 Teamwork |
|
|
X
|
|||
3.2 Communications |
|
X
|
X
|
|||
3.3 Communication in foreign languages |
|
X
|
X
|
|||
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT | ||||||
4.1 Societal conditions, including economically, socially and ecologically sustainable development |
|
|
|
|||
4.2 Enterprise and business context |
|
|
|
|||
4.3 Conceiving, system engineering and management |
|
|
|
|||
4.4 Designing |
|
|
|
|||
4.5 Implementing |
|
|
|
|||
4.6 Operating |
|
|
|
|||
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS | ||||||
5.1 Societal conditions, including economically, socially and ecologically sustainable development within research and development projects |
|
|
|
|||
5.2 Economic conditions for research and development projects |
|
|
|
|||
5.3 Identification of needs, structuring and planning of research or development projects |
|
|
|
|||
5.4 Execution of research or development projects |
|
|
|
|||
5.5 Presentation and evaluation of research or development projects |
|
|
|
This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.
There are no files available for this course.