Materials Optics, 6 credits

Materialoptik, 6 hp

TFYA04

The course is disused.
All instances mentioned below are cancelled.

Main field of study

Applied Physics Physics

Course level

Second cycle

Course type

Programme course

Examiner

Kenneth Järrendahl

Director of studies or equivalent

Magnus Johansson

Education components

Preliminary scheduled hours: 44 h
Recommended self-study hours: 116 h
ECV = Elective / Compulsory / Voluntary
Course offered for Semester Period Timetable module Language Campus ECV N.B.
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Materials and Nano Physics) 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Materials and Nano Physics) 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Materials and Nano Physics) 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Materials and Nano Physics) 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYI Applied Physics and Electrical Engineering - International, M Sc in Engineering (Materials and Nano Physics) 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6CYYY Applied Physics and Electrical Engineering, M Sc in Engineering (Materials and Nano Physics) 8 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6MBME Biomedical Engineering, Master's Programme 2 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6MMSN Materials Science and Nanotechnology, Master's Programme 2 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6MFYS Physics and Nanoscience, Master's Programme 2 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6MFYS Physics and Nanoscience, Master's Programme (Experimentell fysik) 2 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED
6MFYS Physics and Nanoscience, Master's Programme (Teoretisk fysik) 2 (Spring 2018) 1 4 English Linköping, Valla E CANCELLED

Main field of study

Applied Physics, Physics

Course level

Second cycle

Advancement level

A1X

Course offered for

  • Physics and Nanoscience, Master's Programme
  • Materials Science and Nanotechnology, Master's Programme
  • Applied Physics and Electrical Engineering - International, M Sc in Engineering
  • Applied Physics and Electrical Engineering, M Sc in Engineering
  • Biomedical Engineering, Master's Programme

Specific information

The course is temporarily suspended 2018.

Entry requirements

Note: Admission requirements for non-programme students usually also include admission requirements for the programme and threshold requirements for progression within the programme, or corresponding.

Prerequisites

Basic courses in linear algebra and complex numbers

Intended learning outcomes

The course objective is to give a physical background to linear optical properties of materials, to describe how they can be measured and analyzed with modern techniques and to give examples of how they can be utilized in devices and for understanding of advanced optical structures. Special emphasis will be on tools (often matrix-based) for analyzing complex structures found in devices as well as in nature. Application examples will be chosen both from solid state physics of device-related materials and from optical structures in nature, e.g. structural colors in insects, with the ambition to illustrate ongoing research and development in university and industry. More specifically the course treats determination and analysis of optically related materials properties like refractive index, optical band gaps, etc, as well as determination of microstructure like thicknesses of thin films and analysis of multilayered systems, materials composition, porosity, and more. The ambition is to provide knowledge in optics on a level sufficient to understand results from ongoing research in the corresponding areas and also to prepare for research. Goals:

  • To learn about basic theory to provide understanding for the optics and physics behind linear optical properties.
  • To learn about models for analysis to provide mathematical tools useful to understand and develop optical systems, methods and components found in various environments in society.
  • To provide a connection to reality through examples from research to demonstrate that it can be a small step from university studies to knowledge and methodology used in research and development.
  • To apply the knowledge and models in laboratory exercises and simulations to check usefulness and limitations of theories and models. In summary the goal is to describe the path from physics to application and during the trip provide models, tools and methodology useful in practice.

     

Course content

Among the included subjects for basic understanding of optics are:

  • Relations between the microscopic properties (dipoles) and macroscopic properties (dielectric function) of materials
  • Anisotropic and bianisotropic optical properties
  • Spectral properties: absorption and dispersion, phonon spectroscopy
  • Optical properties of composite materials and metamaterials
  • Polarized light and depolarization: Jones formalism and Stokes/Mueller formalism
  • Detailed understanding about surface optics
  • Advanced multilayer optics including photonic crystals and structural colors.

Among the practical tools to be put in the tool box are:

    • Models for parameterization of optical properties
    • Effective-media models for composite materials
    • Matrix models for polarized light
    • Methodology and matrix models for reflection and transmission of light at surfaces with and without layers
    • 4x4 matrix models for anisotropic layered materials
    • Optical measurement techniques: reflectance, ellipsometry, generalized and Mueller-matrix ellipsometry, surface plasmon resonance.
  • A detailed course content is found on the course homepage.

     

Teaching and working methods

The course consists of lectures during which the most important theory is discussed. Some of the lectures are devoted to problem solving. External lectures are invited to give the course a wider perspective.

Examination

LAB1Laborations1 creditsU, G
TEN1Written examination5 creditsU, 3, 4, 5

At the exam it is allowed to bring the course literature Thin Film Optics and Polarized Light, H Arwin, with own notations in the book.

Grades

Four-grade scale, LiU, U, 3, 4, 5

Other information

Supplementary courses: Kursen kombineras gärna med kurser i Optoelektronik och Materiefysik

Department

Institutionen för fysik, kemi och biologi

Director of Studies or equivalent

Magnus Johansson

Examiner

Kenneth Järrendahl

Course website and other links

http://www.ifm.liu.se/undergrad/fysikgtu/coursepage.html?selection=all&sort=kk

Education components

Preliminary scheduled hours: 44 h
Recommended self-study hours: 116 h

Course literature

Books

  • Arwin, Hans, (2016) Thin Film Optics and Polarized Light Viridis (6e)
    The book is sold at Bokakademin.

Compendia

  • Arwin, Hans
Code Name Scope Grading scale
LAB1 Laborations 1 credits U, G
TEN1 Written examination 5 credits U, 3, 4, 5

At the exam it is allowed to bring the course literature Thin Film Optics and Polarized Light, H Arwin, with own notations in the book.

Course syllabus

A syllabus has been established for each course. The syllabus specifies the aim and contents of the course, and the prior knowledge that a student must have in order to be able to benefit from the course.

Timetabling

Courses are timetabled after a decision has been made for this course concerning its assignment to a timetable module. A central timetable is not drawn up for courses with fewer than five participants. Most project courses do not have a central timetable.

Interrupting a course

The vice-chancellor’s decision concerning regulations for registration, deregistration and reporting results (Dnr LiU-2015-01241) states that interruptions in study are to be recorded in Ladok. Thus, all students who do not participate in a course for which they have registered must record the interruption, such that the registration on the course can be removed. Deregistration from a course is carried out using a web-based form: www.lith.liu.se/for-studenter/kurskomplettering?l=sv. 

Cancelled courses

Courses with few participants (fewer than 10) may be cancelled or organised in a manner that differs from that stated in the course syllabus. The board of studies is to deliberate and decide whether a course is to be cancelled or changed from the course syllabus. 

Regulations relating to examinations and examiners 

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Forms of examination

Examination

Written and oral examinations are held at least three times a year: once immediately after the end of the course, once in August, and once (usually) in one of the re-examination periods. Examinations held at other times are to follow a decision of the board of studies.

Principles for examination scheduling for courses that follow the study periods:

  • courses given in VT1 are examined for the first time in March, with re-examination in June and August
  • courses given in VT2 are examined for the first time in May, with re-examination in August and October
  • courses given in HT1 are examined for the first time in October, with re-examination in January and August
  • courses given in HT2 are examined for the first time in January, with re-examination at Easter and in August.

The examination schedule is based on the structure of timetable modules, but there may be deviations from this, mainly in the case of courses that are studied and examined for several programmes and in lower grades (i.e. 1 and 2). 

  • Examinations for courses that the board of studies has decided are to be held in alternate years are held only three times during the year in which the course is given.
  • Examinations for courses that are cancelled or rescheduled such that they are not given in one or several years are held three times during the year that immediately follows the course, with examination scheduling that corresponds to the scheduling that was in force before the course was cancelled or rescheduled.
  • If teaching is no longer given for a course, three examination occurrences are held during the immediately subsequent year, while examinations are at the same time held for any replacement course that is given, or alternatively in association with other re-examination opportunities. Furthermore, an examination is held on one further occasion during the next subsequent year, unless the board of studies determines otherwise.
  • If a course is given during several periods of the year (for programmes, or on different occasions for different programmes) the board or boards of studies determine together the scheduling and frequency of re-examination occasions.

Registration for examination

In order to take an examination, a student must register in advance at the Student Portal during the registration period, which opens 30 days before the date of the examination and closes 10 days before it. Candidates are informed of the location of the examination by email, four days in advance. Students who have not registered for an examination run the risk of being refused admittance to the examination, if space is not available.

Symbols used in the examination registration system:

  ** denotes that the examination is being given for the penultimate time.

  * denotes that the examination is being given for the last time.

Code of conduct for students during examinations

Details are given in a decision in the university’s rule book: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682.

Retakes for higher grade

Students at the Institute of Technology at LiU have the right to retake written examinations and computer-based examinations in an attempt to achieve a higher grade. This is valid for all examination components with code “TEN” and "DAT". The same right may not be exercised for other examination components, unless otherwise specified in the course syllabus.

Retakes of other forms of examination

Regulations concerning retakes of other forms of examination than written examinations and computer-based examinations are given in the LiU regulations for examinations and examiners, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.

Plagiarism

For examinations that involve the writing of reports, in cases in which it can be assumed that the student has had access to other sources (such as during project work, writing essays, etc.), the material submitted must be prepared in accordance with principles for acceptable practice when referring to sources (references or quotations for which the source is specified) when the text, images, ideas, data, etc. of other people are used. It is also to be made clear whether the author has reused his or her own text, images, ideas, data, etc. from previous examinations.

A failure to specify such sources may be regarded as attempted deception during examination.

Attempts to cheat

In the event of a suspected attempt by a student to cheat during an examination, or when study performance is to be assessed as specified in Chapter 10 of the Higher Education Ordinance, the examiner is to report this to the disciplinary board of the university. Possible consequences for the student are suspension from study and a formal warning. More information is available at https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=sv.

Grades

The grades that are preferably to be used are Fail (U), Pass (3), Pass not without distinction (4) and Pass with distinction (5). Courses under the auspices of the faculty board of the Faculty of Science and Engineering (Institute of Technology) are to be given special attention in this regard.

  1. Grades U, 3, 4, 5 are to be awarded for courses that have written examinations.
  2. Grades Fail (U) and Pass (G) may be awarded for courses with a large degree of practical components such as laboratory work, project work and group work.

Examination components

  1. Grades U, 3, 4, 5 are to be awarded for written examinations (TEN).
  2. Grades Fail (U) and Pass (G) are to be used for undergraduate projects and other independent work.
  3. Examination components for which the grades Fail (U) and Pass (G) may be awarded are laboratory work (LAB), project work (PRA), preparatory written examination (KTR), oral examination (MUN), computer-based examination (DAT), home assignment (HEM), and assignment (UPG).
  4. Students receive grades either Fail (U) or Pass (G) for other examination components in which the examination criteria are satisfied principally through active attendance such as other examination (ANN), tutorial group (BAS) or examination item (MOM).

The examination results for a student are reported at the relevant department.

Regulations (apply to LiU in its entirety)

The university is a government agency whose operations are regulated by legislation and ordinances, which include the Higher Education Act and the Higher Education Ordinance. In addition to legislation and ordinances, operations are subject to several policy documents. The Linköping University rule book collects currently valid decisions of a regulatory nature taken by the university board, the vice-chancellor and faculty/department boards.

LiU’s rule book for education at first-cycle and second-cycle levels is available at http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva. 

Books

Arwin, Hans, (2016) Thin Film Optics and Polarized Light Viridis (6e)

The book is sold at Bokakademin.

Compendia

Arwin, Hans

Note: The course matrix might contain more information in Swedish.

I = Introduce, U = Teach, A = Utilize
I U A Modules Comment
1. DISCIPLINARY KNOWLEDGE AND REASONING
1.1 Knowledge of underlying mathematics and science (G1X level)
X
TEN1

                            
1.2 Fundamental engineering knowledge (G1X level)
X
X
TEN1

                            
1.3 Further knowledge, methods, and tools in one or several subjects in engineering or natural science (G2X level)
X
X
LAB1
TEN1

                            
1.4 Advanced knowledge, methods, and tools in one or several subjects in engineering or natural sciences (A1X level)

                            
1.5 Insight into current research and development work

                            
2. PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
2.1 Analytical reasoning and problem solving
X
X
TEN1

                            
2.2 Experimentation, investigation, and knowledge discovery
X
LAB1

                            
2.3 System thinking

                            
2.4 Attitudes, thought, and learning
X
TEN1

                            
2.5 Ethics, equity, and other responsibilities

                            
3. INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
3.1 Teamwork
X
TEN1

                            
3.2 Communications

                            
3.3 Communication in foreign languages
X
TEN1

                            
4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING SYSTEMS IN THE ENTERPRISE, SOCIETAL AND ENVIRONMENTAL CONTEXT
4.1 External, societal, and environmental context

                            
4.2 Enterprise and business context

                            
4.3 Conceiving, system engineering and management

                            
4.4 Designing

                            
4.5 Implementing

                            
4.6 Operating

                            
5. PLANNING, EXECUTION AND PRESENTATION OF RESEARCH DEVELOPMENT PROJECTS WITH RESPECT TO SCIENTIFIC AND SOCIETAL NEEDS AND REQUIREMENTS
5.1 Societal conditions, including economic, social, and ecological aspects of sustainable development for knowledge development

                            
5.2 Economic conditions for knowledge development

                            
5.3 Identification of needs, structuring and planning of research or development projects

                            
5.4 Execution of research or development projects

                            
5.5 Presentation and evaluation of research or development projects

                            

This tab contains public material from the course room in Lisam. The information published here is not legally binding, such material can be found under the other tabs on this page.

There are no files available for this course.