Materialoptik, 6 hp
Materials Optics, 6 credits
TFYA04
Huvudområde
Teknisk fysik FysikUtbildningsnivå
Avancerad nivåKurstyp
ProgramkursExaminator
Kenneth JärrendahlStudierektor eller motsvarande
Magnus JohanssonUndervisningstid
Preliminär schemalagd tid: 44 hRekommenderad självstudietid: 116 h
Huvudområde
Teknisk fysik, FysikUtbildningsnivå
Avancerad nivåFördjupningsnivå
A1XKursen ges för
- Fysik och nanovetenskap, masterprogram
- Materials Science and Nanotechnology, masterprogram
- Civilingenjör i teknisk fysik och elektroteknik - internationell
- Civilingenjör i teknisk fysik och elektroteknik
- Biomedical Engineering, masterprogram
Särskild information
Kursen ges ej 2018.
Förkunskapskrav
OBS! Tillträdeskrav för icke programstudenter omfattar vanligen också tillträdeskrav för programmet och ev. tröskelkrav för progression inom programmet, eller motsvarande.
Rekommenderade förkunskaper
Grundkurser i linjär algebra och komplexa tal
Lärandemål
Kursens syftar till att ge fördjupade kunskaper om fysiken bakom fasta materials och metamaterials linjära optiska egenskaper samt beskriva metoder att bestämma dessa egenskaper. Tillämpningsexempel väljs från områdena materialfysik, biologi, m fl och avser att belysa forskning och utveckling inom universitet och industri. Tonvikt i exemplen läggs på bestämning av optiskt relaterade materialegenskaper såsom brytningsindex, fononstruktur och bandgap samt på bestämning av nano- och mikrostruktur såsom tjocklek av tunna ytskikt och analys av avancerade multilagrade system, materialsammansättning, porositet mm. Som en annan viktig tillämpningsdel ingår studier av anisotropa material och metamaterial. Kursen avser att förmedla grundläggande kunskaper i optik på en sådan nivå att det räcker för att förstå resultat från pågående internationell forskning inom kursens område samt för att förbereda för industriella tillämpningar. Ambitionen är att beskriva hela vägen från fysik till tillämpning och samtidigt tillhandahålla modeller, metodologi och verktyg som är praktiskt användbara. För den nyfikne fysikern ingår grundläggande teori med förankring i fysik med syfte att ge en förståelse för den optik/fysik som är relevant för materials linjära optiska egenskaper. För ingenjören ingår studier av matematiska modeller för analys med syfte att tillhandahålla fysikaliska/matematiska verktyg som är användbara för att utveckla och beskriva de optiska system, metoder och komponenter som finns i olika miljöer i samhället och som behöver utvecklas vidare. Kursens verklighetsförankring sker genom tillämpningsexempel för att visa att det är ett kort steg mellan universitetsstudierna och den kunskap och de metoder som används inom forskning och utveckling. I laborationer och simuleringar testas teorier och modeller för att belysa deras användbarhet och begränsningar. Kursens specifika mål. Efter kursen ska studenten:
- kunna förklara relationen mellan materials mikroskopiska egenskaper och materials makroskopiska optiska egenskaper, kunna använda parametriska modeller för optiska egenskaper, förstå anisotropa optiska egenskaper, samt vara orienterad om bianisotropa egenskaper;
- kunna förklara sammansatta materials optiska egenskaper och kunna beräkna dessa med effektivamediamodeller;
- kunna beskriva metamaterials optiska egenskaper inklusive negativa brytningsindex;
- förstå polarisation av ljus, inklusive partiell polarisation, och kunna modellera detta med matrismodeller;
- kunna förklara och använda den teori som beskriver yt- och tunnfilmsoptik inklusive anisotropa material och avancerade multilagerstrukturer: 2x2 matrismodeller samt 4x4 matrismodeller för anisotropa material
- kunna förklara de optiska mätmetoderna reflektans, ellipsometri och ytplasmonresonans samt generaliserad ellipsometri för avancerad materialanalys.
Kursinnehåll
Ljus och material
- Optiska egenskaper: Komplexa dielektricitetsfunktionen, komplexa brytningsindex och optisk konduktivitet; koppling mellan dipoler (mikro) och dielektricitetsfunktionen (makro), Clausius-Mossotti; symmetriegenskaper för dielektricitetsfunktionen, kausalitet, Kramers-Kronigsamband, beskrivning av dielektricitetsfunktionen som poler i komplexa talplanet; anisotropa material, tensoregenskaper hos dielektricitetsfunktionen, dubbelbrytning, dikroism, optisk aktivitet; optiska egenskaper som funktion av våglängd: fononer och molekylära processer i IR, elektroniska processer i UV/VIS; modeller för dielektricitetsfunktionen: Lorentz, Drude, empiriska, semi-empiriska, parametriska; från optik till andra områden: ledningsförmåga, van der Wahlskrafter, kristallorientering, temperaturutvidgning, …..
- Heterogena media: effektiva media-konceptet: dielektricitetsfunktionen genom lösning av Maxwell’s ekvationer i komplexa geometrier; några exakt lösbara geometrier: skiktade material; sfärer i vakuum: Lorentz-Lorents modellen; modeller enligt Maxwell-Garnett, Bruggeman; effekter av partikelform; begränsningsteorem för dielektricitetsfunktionen
- Polarisation: plana vågor; komplex-talbeskrivning av polarisation; polarisationsellips; Jones formalism;
- Reflektion: gränsyteoptik: Fresnel’s ekvationer för snett infall och komplexa brytningsindex; total internreflektion, evanescenta fält; reflektion mot ytor med ett skikt: Airy-modellen; reflektion mot ytor med flera skikt: beskrivning med spridningsmatrisformalism
- Metodöversikt: reflektans, transmittans; ellipsometri; ytmodbaserade (TM - ytpolaritoner)
- Ellipsometri: teori och instrumentering; mikrostrukturbestämning, bestämning av optiska egenskaper
Materialoptisk fördjupning
- Partiell polarisation: Stokes/Mueller formalism; depolarisation
- Anisotropa material: 4x4 matriser för reflektion; Eulervinkelrotation; magnetooptik
- Metamaterial: definition och klassificering; artificiell magnetism; kiralitet; negativa brytningsindex
- Generaliserad ellipsometri; Mueller-matrisellipsometri
- Avancerade multilager: strukturella färger och optiskt funktionella strukturer hos insekter; artificiella nanostrukturer
Undervisnings- och arbetsformer
Kursen ges i form av föreläsningar där även tillämpningsexempel behandlas. Gästföreläsare inbjuds för att ge kursinnehållet ett bredare perspektiv.
Examination
LAB1 | Laborationer | 1 hp | U, G |
TEN1 | Skriftlig tentamen | 5 hp | U, 3, 4, 5 |
Betygsskala
Fyrgradig skala, LiU, U, 3, 4, 5Övrig information
Påbyggnadskurser: Kursen kombineras gärna med kurser i Optoelektronik och Materiefysik
Om undervisningsspråk
Undervisningsspråk visas på respektive kurstillfälle på fliken "Översikt".
- Observera att även om undervisningsspråk är svenska kan delar av kursen ges på engelska.
- Om undervisningsspråk är Svenska/Engelska kan kursen i sin helhet ges på engelska vid behov.
- Om undervisningsspråk är Engelska ges kursen i sin helhet på engelska.
Övrigt
Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.
Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som ingår i kursen skall därför genomföras med kursplanen som utgångspunkt.
Institution
Institutionen för fysik, kemi och biologiStudierektor eller motsvarande
Magnus JohanssonExaminator
Kenneth JärrendahlKurshemsida och andra länkar
http://www.ifm.liu.se/undergrad/fysikgtu/coursepage.html?selection=all&sort=kkUndervisningstid
Preliminär schemalagd tid: 44 hRekommenderad självstudietid: 116 h
Kurslitteratur
Böcker
- Arwin, Hans, (2016) Thin Film Optics and Polarized Light Viridis (6e)
Kursboken kan köpas via Bokakademin.
Kompendier
- Arwin, Hans,
Särtryck som kan laddas hem via kursrummet (Lisam)
Kod | Benämning | Omfattning | Betygsskala |
---|---|---|---|
LAB1 | Laborationer | 1 hp | U, G |
TEN1 | Skriftlig tentamen | 5 hp | U, 3, 4, 5 |
Kursplan
För varje kurs finns en kursplan. I kursplanen anges kursens mål och innehåll samt de särskilda förkunskaper som erfordras för att den studerande skall kunna tillgodogöra sig undervisningen.
Schemaläggning
Schemaläggning av kurser görs efter, för kursen, beslutad blockindelning. För kurser med mindre än fem deltagare, och flertalet projektkurser läggs inget centralt schema.
Avbrott på kurs
Enligt rektors beslut om regler för registrering, avregistrering samt resultatrapportering (Dnr LiU-2015-01241) skall avbrott i studier registreras i Ladok. Alla studenter som inte deltar i kurs man registrerat sig på är alltså skyldiga att anmäla avbrottet så att kursregistreringen kan
tas bort. Avanmälan från kurs görs via webbformulär, www.lith.liu.se/for-studenter/kurskomplettering?l=sv.
Inställd kurs
Kurser med få deltagare ( < 10) kan ställas in eller organiseras på annat sätt än vad som är angivet i kursplanen. Om kurs skall ställas in eller avvikelse från kursplanen skall ske prövas och beslutas detta av programnämnden.
Föreskrifter rörande examination och examinator
Se särskilt beslut i regelsamlingen: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678
Examination
Tentamen
Skriftlig och muntlig tentamen ges minst tre gånger årligen; en gång omedelbart efter kursens slut, en gång i augustiperioden samt vanligtvis i en av omtentamensperioderna. Annan placering beslutas av programnämnden.
Principer för tentamensschemat för kurser som följer läsperioderna:
- kurser som ges Vt1 förstagångstenteras i mars och omtenteras i juni och i augusti
- kurser som ges Vt2 förstagångstenteras i maj och omtenteras i augusti och i oktober
- kurser som ges Ht1 förstagångstenteras i oktober och omtenteras i januari och augusti
- kurser som ges Ht2 förstagångstenteras i januari och omtenteras i påsk och i augusti
Tentamensschemat utgår från blockindelningen men avvikelser kan förekomma främst för kurser som samläses/samtenteras av flera program samt i lägre årskurs.
- För kurser som av programnämnden beslutats vara vartannatårskurser ges tentamina 3 gånger endast under det år kursen ges.
- För kurser som flyttas eller ställs in så att de ej ges under något eller några år ges tentamina 3 gånger under det närmast följande året med tentamenstillfällen motsvarande dem som gällde före flyttningen av kursen.
- Har undervisningen upphört i en kurs ges under det närmast följande året tre tentamina samtidigt som tentamen ges i eventuell ersättningskurs, alternativt i samband med andra omtentamina. Dessutom ges tentamen ytterligare en gång under det därpå följande året om inte programnämnden föreskriver annat.
- Om en kurs ges i flera perioder under året (för program eller vid skilda tillfällen för olika program) beslutar programnämnden/programnämnderna gemensamt om placeringen av och antalet omtentamina.
Anmälan till tentamen
För deltagande i tentamina krävs att den studerande gjort förhandsanmälan i Studentportalen under anmälningsperioden, dvs tidigast 30 dagar och senast 10 dagar före tentamensdagen. Anvisad sal meddelas fyra dagar före tentamensdagen via e-post. Studerande, som inte förhandsanmält sitt deltagande riskerar att avvisas om plats inte finns inom ramen för tillgängliga skrivningsplatser.
Teckenförklaring till tentaanmälningssystemet:
** markerar att tentan ges för näst sista gången
* markerar att tentan ges för sista gången
Ordningsföreskrifter för studerande vid tentamensskrivningar
Se särskilt beslut i regelsamlingen: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682
Plussning
Vid Tekniska högskolan vid LiU har studerande rätt att genomgå förnyat prov för högre betyg på skriftliga tentamina samt datortentamina, dvs samtliga provmoment med kod TEN och DAT. På övriga examinationsmoment ges inte möjlighet till plussning, om inget annat anges i kursplan.
Regler för omprov
För regler för omprov vid andra examinationsformer än skriftliga tentamina och datortentamina hänvisas till LiU-föreskrifterna för examination och examinator, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678.
Plagiering
Vid examination som innebär rapportskrivande och där studenten kan antas ha tillgång till andras källor (exempelvis vid självständiga arbeten, uppsatser etc) måste inlämnat material utformas i enlighet med god sed för källhänvisning (referenser eller citat med angivande av källa) vad gäller användning av andras text, bilder, idéer, data etc. Det ska även framgå ifall författaren återbrukat egen text, bilder, idéer, data etc från tidigare genomförd examination.
Underlåtelse att ange sådana källor kan betraktas som försök till vilseledande vid examination.
Försök till vilseledande
Vid grundad misstanke om att en student försökt vilseleda vid examination eller när en studieprestation ska bedömas ska enligt Högskoleförordningens 10 kapitel examinator anmäla det vidare till universitetets disciplinnämnd. Möjliga konsekvenser för den studerande är en avstängning från studierna eller en varning. För mer information se https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=sv.
Betyg
Företrädesvis skall betygen underkänd (U), godkänd (3), icke utan beröm godkänd (4) och med beröm godkänd (5) användas. Kurser som styrs av tekniska fakultetsstyrelsen fastställt tentamensschema skall därvid särskilt beaktas.
- Kurser med skriftlig tentamen skall ge betygen (U, 3, 4, 5).
- Kurser med stor del tillämpningsinriktade moment såsom laborationer, projekt eller grupparbeten får ges betygen underkänd (U) eller godkänd (G).
Examinationsmoment
- Skriftlig tentamen (TEN) skall ge betyg (U, 3, 4, 5).
- Examensarbete samt självständigt arbete ger betyg underkänd (U) eller godkänd (G).
- Examinationsmoment som kan ge betygen underkänd (U) eller godkänd (G) är laboration (LAB), projekt (PRA), kontrollskrivning (KTR), muntlig tentamen (MUN), datortentamen (DAT), uppgift (UPG), hemtentamina (HEM).
- Övriga examinationsmoment där examinationen uppfylls framför allt genom aktiv närvaro som annat (ANN), basgrupp (BAS) eller moment (MOM) ger betygen underkänd (U) eller godkänd (G).
Rapportering av den studerandes examinationsresultat sker på respektive institution.
Regler
Universitetet är en statlig myndighet vars verksamhet regleras av lagar och förordningar, exempelvis Högskolelagen och Högskoleförordningen. Förutom lagar och förordningar styrs verksamheten av ett antal styrdokument. I Linköpings universitets egna regelverk samlas gällande beslut av regelkaraktär som fattats av universitetsstyrelse, rektor samt fakultets- och områdesstyrelser.
LiU:s regelsamling angående utbildning på grund- och avancerad nivå nås på http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva.
Böcker
Kursboken kan köpas via Bokakademin.
Kompendier
Särtryck som kan laddas hem via kursrummet (Lisam)
Ladda ner
I | U | A | Moduler | Kommentar | ||
---|---|---|---|---|---|---|
1. ÄMNESKUNSKAPER | ||||||
1.1 Kunskaper i grundläggande (motsvarande G1X) matematiska och naturvetenskapliga ämnen |
|
X
|
|
TEN1
|
||
1.2 Kunskaper i grundläggande (motsvarande G1X) teknikvetenskapliga ämnen |
|
X
|
X
|
TEN1
|
Hög grad av forskningsanknytning |
|
1.3 Fördjupade kunskaper (motsvarande G2X), metoder och verktyg inom något/några teknik- och naturvetenskapliga ämnen |
|
X
|
X
|
LAB1
TEN1
|
Laboration i optisk mätteknik |
|
1.4 Väsentligt fördjupade kunskaper (motsvarande A1X), metoder och verktyg inom något/några teknik- och naturvetenskapliga ämnen |
|
|
|
|||
1.5 Insikt i aktuellt forsknings- och utvecklingsarbete |
|
|
|
|||
2. INDIVIDUELLA OCH YRKESMÄSSIGA FÄRDIGHETER OCH FÖRHÅLLNINGSSÄTT | ||||||
2.1 Analytiskt tänkande och problemlösning |
|
X
|
X
|
TEN1
|
I huvudsak problemlösning på examination |
|
2.2 Experimenterande och undersökande arbetssätt samt kunskapsbildning |
|
|
X
|
LAB1
|
Laboration inklusive modellering |
|
2.3 Systemtänkande |
|
|
|
|||
2.4 Förhållningssätt, tänkande och lärande |
|
|
X
|
TEN1
|
Öppen-bok examination testar förmåga att använda kunskap snarare än utantillkunskap |
|
2.5 Etik, likabehandling och ansvarstagande |
|
|
|
|||
3. FÖRMÅGA ATT ARBETA I GRUPP OCH ATT KOMMUNICERA | ||||||
3.1 Arbete i grupp |
|
|
X
|
TEN1
|
Laborationer görs i grupp |
|
3.2 Kommunikation |
|
|
|
|||
3.3 Kommunikation på främmande språk |
|
|
X
|
TEN1
|
Undervisningsspråk engelska; examination på engelska |
|
4. PLANERING, UTVECKLING, REALISERING OCH DRIFT AV TEKNISKA PRODUKTER OCH SYSTEM MED HÄNSYN TILL AFFÄRSMÄSSIGA OCH SAMHÄLLELIGA BEHOV OCH KRAV | ||||||
4.1 Samhälleliga villkor, inklusive ekonomiskt, socialt och ekologiskt hållbar utveckling |
|
|
|
|||
4.2 Företags- och affärsmässiga villkor |
|
|
|
|||
4.3 Att identifiera behov samt strukturera och planera utveckling av produkter och system |
|
|
|
|||
4.4 Att konstruera produkter och system |
|
|
|
|||
4.5 Att realisera produkter och system |
|
|
|
|||
4.6 Att ta i drift och använda produkter och system |
|
|
|
|||
5. PLANERING, GENOMFÖRANDE OCH PRESENTATION AV FORSKNINGS- ELLER UTVECKLINGSPROJEKT MED HÄNSYN TILL VETENSKAPLIGA OCH SAMHÄLLELIGA BEHOV OCH KRAV | ||||||
5.1 Samhälleliga villkor, inklusive ekonomiskt, socialt och ekologiskt hållbar utveckling för kunskapsutveckling |
|
|
|
|||
5.2 Ekonomiska villkor för kunskapsutveckling |
|
|
|
|||
5.3 Att identifiera behov samt strukturera och planera forsknings- eller utvecklingsprojekt |
|
|
|
|||
5.4 Att genomföra forsknings- eller utvecklingsprojekt |
|
|
|
|||
5.5 Att redovisa och utvärdera forsknings- eller utvecklingsprojekt |
|
|
|
Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.
Det finns inga filer att visa.