Analys av Big data, 6 hp

Big Data Analytics, 6 credits

732A54

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Kurstyp

Fristående- och programkurs

Examinator

Olaf Hartig

Studierektor eller motsvarande

Patrick Lambrix
VOF = Valbar / Obligatorisk / Frivillig
Kursen ges för Termin Veckor Block Språk Ort/Campus VOF
F7MSL Statistics and Machine Learning, Master´s Programme 2 (VT 2020) 202014-202023 1 Engelska Linköping, Valla O

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Fördjupningsnivå

A1X

Kursen ges för

  • Masters Programme in Statistics and Machine Learning

Förkunskapskrav

Kandidatexamen i något av följande ämnen: statistik, matematik, tillämpad matematik, datavetenskap, teknik eller motsvarande examen. Godkända/avklarade kurser i kalkyl och linjär algebra krävs.  Utöver detta, erfordras godkända/avklarade kurser i grundläggande statistik som motsvarar minst 6 hp och grundläggande programmering som motsvarar minst 6 hp.

Engelska B eller motsvarande. 

Lärandemål

Efter avslutad kurs skall den studerande på en avancerad nivå kunna:
- samla och lagra Big Data i en distribuerad datormiljö
- genomföra grundläggande förfrågningar till en databas som opererar på ett distribuerat filsystem
- redovisa grundläggande principer för parallella beräkningar
- använda MapReduce begreppet för att parallellisera vanliga databearbetningsalgoritmer
- redovisa hur vanliga maskininlärningsmodeller bör modifieras för att bearbeta Big Data
- använda redskap för maskininlärning av Big Data

Kursinnehåll

Kursen fokuserar på huvudbegrepp och huvudredskap för lagring, bearbetning och analys av Big Data som är nödvändiga för ett professionellt arbete och forskning inom dataanalys. 

- Introduktion till Big Data: koncept och redskap
- Introduktion till Python
- Grundläggande principer av parallella beräkningar
- Introduktion till databaser
- Filsystem och databaser för Big Data
- Förfrågningar för Big Data
- Resurshantering i en klustermiljö
- Parallella beräkningar för Big Data
- Grundläggande algoritmer för maskininlärning
- Maskininlärning för Big Data

Examination

Skriftlig redovisning av labbuppgifter. Skriftlig tentamen. Detaljerad information återfinns i studiehandledningen.

Betygsskala

ECTS, EC

Institution

Institutionen för datavetenskap
Kod Benämning Omfattning Betygsskala
LAB1 Laboration 3 hp EC
TENT Tentamen 3 hp EC
Det finns ingen kurslitteratur tillgänglig på studieinfo för den här kursen.

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.

Det finns inga filer att visa.