Beslutsteori, 6 hp

Decision Theory, 6 credits

732A66

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Kurstyp

Fristående- och programkurs

Examinator

Anders Nordgaard

Kursansvarig

Anders Nordgaard

Studierektor eller motsvarande

Jolanta Pielaszkiewicz
VOF = Valbar / Obligatorisk / Frivillig
Kursen ges för Termin Veckor Block Språk Ort/Campus VOF
F7MSL Statistics and Machine Learning, Master´s Programme 3 (HT 2020) 202036-202102 4 Engelska Linköping, Valla V

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Fördjupningsnivå

A1N

Kursen ges för

  • Masters Programme in Statistics and Machine Learning

Förkunskapskrav

Kandidatexamen i något av följande ämnen: statistik, matematik, tillämpad matematik, datavetenskap, teknik eller motsvarande examen. Utöver detta, erfordras godkända/avklarade kurser i matematiks analys, linjär algebra, statistik och programmering.
Engelska B eller motsvarande. 

Lärandemål

Efter avslutad kurs skall den studerande på en avancerad nivå kunna:
- använda vanligt förekommande statistiska metoder för beslutsfattande,
- tillämpa huvudprinciperna för subjektiv tolkning av sannolikheter, Bayesiansk inferens, nyttoteori och sekventiella metoder för att fatta beslut,
- kritiskt granska förutsättningar för varje steg i en beslutsteoretisk process

Kursinnehåll

Kursinnehållet omfattar:
- Den subjektiva tolkningen av sannolikhetsbegreppet
- Resonemang med sannolikheter och likelihood-teori,
- Bayesiansk utvärdering av hypoteser,
- Beslutsteoretiska komponenter,
- Nytto- och förlustfunktioner,
- Grafisk modellering som ett verktyg för beslutsfattande,
- Sekventiella metoder för statistisk inferens

 

Undervisnings- och arbetsformer

Undervisningen omfattar föreläsningar och övningstillfällen. Föreläsningarna behandlar teori, koncept och metodik. Övningstillfällena omfattar problemlösning med och utan programvara. Utöver detta ska den studerande utöva självstudier.
Undervisningsspråk: Engelska 

 

Examination

Obligatoriska inlämningsuppgifter omfattande såväl teori som praktiska problemlösningar (med datorstöd). En avslutande muntlig tentamen. Detaljerad information återfinns i studiehandledningen.

Betygsskala

ECTS, EC

Institution

Institutionen för datavetenskap
Kod Benämning Omfattning Betygsskala
TENT Tentamen 3 hp EC
UPG1 Uppgift 3 hp EC
Det finns ingen kurslitteratur tillgänglig på studieinfo för den här kursen.

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.

Det finns inga filer att visa.