Beslutsteori, 6 hp
Decision Theory, 6 credits
732A66
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåKurstyp
Fristående- och programkursExaminator
Anders NordgaardKursansvarig
Anders NordgaardStudierektor eller motsvarande
Jolanta PielaszkiewiczKursen ges för | Termin | Veckor | Block | Språk | Ort/Campus | VOF | |
---|---|---|---|---|---|---|---|
F7MSL | Statistics and Machine Learning, Master´s Programme - First and main admission round | 3 (HT 2021) | 202135-202202 | 4 | Engelska | Linköping, Valla | V |
F7MSL | Statistics and Machine Learning, Master´s Programme - Second admission round (open only for Swedish/EU students) | 3 (HT 2021) | 202135-202202 | 4 | Engelska | Linköping, Valla | V |
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåFördjupningsnivå
A1NKursen ges för
- Master's Programme in Statistics and Machine Learning
Förkunskapskrav
- Kandidatexamen om 180hp (eller motsvarande) inom något av följande ämnen:
- statistik
- matematik
- tillämpad matematik
- datavetenskap
- teknik
- Godkända kurser i:
- kalkyl
- linjär algebra
- statistik
- programmering
- Engelska 6/B
(Undantag för svenska)
Lärandemål
Efter avslutad kurs skall den studerande på en avancerad nivå kunna:
- använda vanligt förekommande statistiska metoder för beslutsfattande,
- tillämpa huvudprinciperna för subjektiv tolkning av sannolikheter, Bayesiansk inferens, nyttoteori och sekventiella metoder för att fatta beslut,
- kritiskt granska förutsättningar för varje steg i en beslutsteoretisk process
Kursinnehåll
Kursinnehållet omfattar:
- Den subjektiva tolkningen av sannolikhetsbegreppet
- Resonemang med sannolikheter och likelihood-teori,
- Bayesiansk utvärdering av hypoteser,
- Beslutsteoretiska komponenter,
- Nytto- och förlustfunktioner,
- Grafisk modellering som ett verktyg för beslutsfattande,
- Sekventiella metoder för statistisk inferens
Undervisnings- och arbetsformer
Undervisningen omfattar föreläsningar och övningstillfällen. Föreläsningarna behandlar teori, koncept och metodik. Övningstillfällena omfattar problemlösning med och utan programvara. Utöver detta ska den studerande utöva självstudier.
Undervisningsspråk: Engelska
Examination
Obligatoriska inlämningsuppgifter omfattande såväl teori som praktiska problemlösningar (med datorstöd). En avslutande muntlig tentamen. Detaljerad information återfinns i studiehandledningen.
Betygsskala
ECTS, ECInstitution
Institutionen för datavetenskapKod | Benämning | Omfattning | Betygsskala |
---|---|---|---|
TENT | Tentamen | 3 hp | EC |
UPG1 | Uppgift | 3 hp | EC |
Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.
Det finns inga filer att visa.