Datorintensiva statistiska metoder, 6 hp
Computational Statistics, 6 credits
732A90
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåKurstyp
ProgramkursExaminator
Frank MillerKursansvarig
Frank MillerStudierektor eller motsvarande
Jolanta PielaszkiewiczKursen ges för | Termin | Veckor | Block | Språk | Ort/Campus | VOF | |
---|---|---|---|---|---|---|---|
F7MSL | Statistics and Machine Learning, Master´s Programme - First and main admission round | 1 (HT 2022) | 202244-202302 | 2 | Engelska | Linköping, Valla | O |
F7MSL | Statistics and Machine Learning, Master´s Programme - Second admission round (open only for Swedish/EU students) | 1 (HT 2022) | 202244-202302 | 2 | Engelska | Linköping, Valla | O |
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåFördjupningsnivå
A1NKursen ges för
- Master's Programme in Statistics and Machine Learning
Förkunskapskrav
- Kandidatexamen om 180hp (eller motsvarande) inom något av följande ämnen:
- statistik
- matematik
- tillämpad matematik
- datavetenskap
- teknik
- Godkända kurser i:
- matematisk analys
- linjär algebra
- statistik
- programmering
- Engelska 6
Undantag för svenska
Lärandemål
Efter avslutad kurs skall den studerande på en avancerad nivå kunna:
- redogöra för hur datoraritmetik påverkar statistiska beräkningar,
- utveckla datorimplementationer av standardmetoder för simulering från komplexa statistiska fördelningar,
- utveckla datorimplementationer av vanliga metoder för deterministisk och stochastisk optimering inom statistik och maskininlärning,
- använda en lämplig osäkerhetsskattningsmetod i ett givet sammanhang och utveckla en implementation av motsvarande algoritmer i ett programmeringsspråk,
- tolka resultat av olika simulerings- och skattningsmetoder.
Kursinnehåll
Kursen omfattar en mängd av datorbaserade modeller och matematiska redskap som möjliggör en datorintensiv statistisk inferens av komplexa och utmanande problem i statistik, maskininlärning och ingenjörsvetenskap.
Följande ämnen ingår i kursen:
- effekt av datoraritmetik på statistiska beräkningar,
- grundläggande metoder för slumptalsgenerering som inkluderar inverse CDF metod och acceptance/rejection metod,
- Monte Carlo metoder för simulering och inferens som inkluderar bootstrap and jackknife,
- Markov Chain Monte Carlo (MCMC) simuleringar som inkluderar Metropolis-Hastings och Gibbs algoritmer,
- introduktion till optimering utan bivillkor och stokastisk optimering.
Undervisnings- och arbetsformer
Kursen består av föreläsningar, datorövningar och seminarier som kompletteras med självstudier. Föreläsningarna ägnas åt genomgång av teori, koncept och metodik. Datorövningarna ägnas åt praktisk statistisk analys. Seminarier ägnas åt studentpresentationer och diskussioner av uppgifter.
Undervisningsspråk: engelska.
Examination
Skriftlig redovisning av labbuppgifter. Aktivt deltagande i seminarierna. En skriftlig tentamen. Detaljerad information återfinns i studiehandledningen.
Om det finns särskilda skäl, och om det med hänsyn till det obligatoriska momentets karaktär är möjligt, får examinator besluta att ersätta det obligatoriska momentet med en annan likvärdig uppgift.
Om LiU: s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det.
Om koordinatorn har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.
Examinator får också besluta om anpassad examination eller alternativ examinationsform om examinator bedömer att det finns synnerliga skäl och examinator bedömer det möjligt utifrån kursens mål.
Studerande, vars examination underkänts två gånger på kursen eller del av kursen, har rätt att begära en annan examinator vid förnyat examinationstillfälle.
Den som godkänts i prov får ej delta i förnyat prov för högre betyg.
Betygsskala
ECTS, ECÖvrig information
Planering och genomförande av kurs ska utgå från kursplanens formuleringar. Den kursvärdering som ska ingå i varje kurs ska därför behandla frågan om hur kursen överensstämmer med kursplanen.
Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.
Om det föreligger synnerliga skäl får rektor i särskilt beslut ange förutsättningarna för, och delegera rätten att besluta om, tillfälliga avsteg från denna kursplan.
Institution
Institutionen för datavetenskapKod | Benämning | Omfattning | Betygsskala |
---|---|---|---|
LAB2 | Laboration | 1 hp | EC |
DAT2 | Tentamen | 5 hp | EC |
Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.
Det finns inga filer att visa.