Bayesianska metoder, 6 hp

Bayesian Learning, 6 credits

732A91

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Kurstyp

Fristående- och programkurs

Examinator

Bertil Wegmann

Kursansvarig

Bertil Wegmann

Studierektor eller motsvarande

Jolanta Pielaszkiewicz
VOF = Valbar / Obligatorisk / Frivillig
Kursen ges för Termin Veckor Block Språk Ort/Campus VOF
F7MSL Statistics and Machine Learning, Master´s Programme - First and main admission round 2 (VT 2022) 202213-202222 2 Engelska Linköping, Valla O
F7MSL Statistics and Machine Learning, Master´s Programme - Second admission round (open only for Swedish/EU students) 2 (VT 2022) 202213-202222 2 Engelska Linköping, Valla O

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Fördjupningsnivå

A1N

Kursen ges för

  • Master's Programme in Statistics and Machine Learning

Förkunskapskrav

Kandidatexamen i något av följande ämnen: statistik, matematik, tillämpad matematik, datavetenskap, teknik eller motsvarande examen. Utöver detta, erfordras godkända/avklarade kurser i kalkyl, linjär algebra, statistik och programmering.
Studenten ska också ha följande kurser godkända: En grundkurs i sannolikhetslära och inferens; en kurs som inkluderar multipel linjär regression.
Engelska B eller motsvarande.

Lärandemål

Efter avslutad kurs skall den studerande på en avancerad nivå kunna:
- redogöra för de största skillnaderna mellan Bayesiansk och frekventistisk inferens,
- analysera grundläggande statistiska modeller som utnyttjar det Bayesianska tillvägagångssättet och tolka resultat på ett korrekt sätt,
- använda Bayesianska modeller för prediktion och beslutsfattande,
- implementera avancerade statistiska modeller genom att använda avancerade simuleringstekniker,
- genomföra den Bayesianska inferensen.

Kursinnehåll

Kursen behandlar:
Likelihood, Subjektiv sannolikhet, Bayes sats, apriori och aposteriori fördelningar, Bayesiansk analys av följande modeller: Bernoulli, Normal, Multinomial, Multivariat normal; Linjär och icke-linjär regression, Binär regression, Mixture modeller, Regulariseringsprior, Klassificering, Naive Bayes, Marginalisering, Aposteriori approximation, Prediktion, Beslutsteori, Markov Chain Monte Carlo, Gibbs sampling, Bayesiansk variabelselektion, Modelselektion, Modelviktning.

Undervisnings- och arbetsformer

Kursen består av föreläsningar, lektioner och datorlaborationer. Föreläsningarna presenterar begrepp och metoder. Lektionerna ägnas åt lösning av matematiskt inriktade uppgifter. Datorlaborationerna ägnas åt praktiska övningar i Bayesiansk inferens. Utöver detta ska den studerande utöva självstudier.
Språk: Engelska.

Examination

Datortentamen samt skriftliga laborationsuppgifter. Detaljerad information återfinns i studiehandlednignen.

Om det finns särskilda skäl, och om det med hänsyn till det obligatoriska momentets karaktär är möjligt, får examinator besluta att ersätta det obligatoriska momentet med en annan likvärdig uppgift. 

Om LiU: s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det.

Om koordinatorn har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.

Examinator får också besluta om anpassad examination eller alternativ examinationsform om examinator bedömer att det finns synnerliga skäl och examinator bedömer det möjligt utifrån kursens mål.

Studerande, vars examination underkänts två gånger på kursen eller del av kursen, har rätt att begära en annan examinator vid förnyat examinationstillfälle.

Den som godkänts i prov får ej delta i förnyat prov för högre betyg.

Betygsskala

ECTS, EC

Övrig information

Planering och genomförande av kurs ska utgå från kursplanens formuleringar. Den kursvärdering som ska ingå i varje kurs ska därför behandla frågan om hur kursen överensstämmer med kursplanen.

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Om det föreligger synnerliga skäl får rektor i särskilt beslut ange förutsättningarna för, och delegera rätten att besluta om, tillfälliga avsteg från denna kursplan. 

Institution

Institutionen för datavetenskap
Kod Benämning Omfattning Betygsskala
DAT2 Tentamen 5 hp EC
LAB2 Laboration 1 hp EC
Det finns ingen kurslitteratur tillgänglig på studieinfo för den här kursen.

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.

Det finns inga filer att visa.