Statistical Methods, 6 hp
Statistical Methods, 6 credits
732A93
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåKurstyp
ProgramkursExaminator
Ann-Charlotte HallbergKursansvarig
Ann-Charlotte HallbergStudierektor eller motsvarande
Jolanta PielaszkiewiczKursen ges för | Termin | Veckor | Block | Språk | Ort/Campus | VOF | |
---|---|---|---|---|---|---|---|
F7MSL | Statistics and Machine Learning, Master´s Programme - First and main admission round | 1 (HT 2022) | 202235-202243 | 3 | Engelska | Linköping, Valla | V |
F7MSL | Statistics and Machine Learning, Master´s Programme - Second admission round (open only for Swedish/EU students) | 1 (HT 2022) | 202235-202243 | 3 | Engelska | Linköping, Valla | V |
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåFördjupningsnivå
A1NKursen ges för
- Master's Programme in Statistics and Machine Learning
Förkunskapskrav
- Kandidatexamen om 180hp (eller motsvarande) inom något av följande ämnen:
- statistik
- matematik
- tillämpad matematik
- datavetenskap
- teknik
- Godkända kurser i:
- matematisk analys
- linjär algebra
- statistik
- programmering
- Engelska 6
Undantag för svenska
Lärandemål
Efter avslutad kurs skall den studerande kunna:
- använda kunskaper om de vanliga statistiska fördelningarna för att skapa statistiska modeller,
- tillämpa huvudprinciper inom punktskattning, intervallskattning och hypotesprövning,
- visa en god förståelse av huvudkoncepten inom den Bayesianska analysen,
- skapa linjära regressionsmodeller, kontrollera deras osäkerhet och genomföra modelljämförelser,
- tillämpa metoder för sampling från stora ändliga populationer,
- tillämpa grundläggande imputeringsmetoder för modellskapande och utvärdering,
- redovisa bakomliggande matematiska modeller för de ovannämnda metoder och genomföra teoretiska beräkningar med dessa modeller.
Kursinnehåll
Kursen omfattar ett brett utbud av de mest viktiga begrepp och metoder inom statistiken.
Kursen innehåller:
- sannolikhetsbegrepp,
- slumpvariabel, vanliga statistiska fördelningar och dess egenskaper,
- punkt- och intervallskattning,
- hypotesprövning,
- enkel och multipel linjär regression, t-test och F-test; Residual- och uteliggaranalys,
- Likelihood, apriori och aposteriori fördelning, Bayes sats
- introduktion till Markov kedjor,
- sampling med och utan återläggning,
- imputering för modellskapande.
Undervisnings- och arbetsformer
Undervisningen består av föreläsningar, seminarier och datorlaborationer som kompletteras med självstudier. Föreläsningarna ägnas åt presentationer av begrepp, teorier och metoder. Datorlaborationerna ger en praktisk erfarenhet av statistisk analys. Seminarierna ägnas åt presentationer och diskussioner av olika uppgifter.
Examination
Skriftliga redogörelser till inlämningsuppgifter samt en skriftlig tentamen. Detaljerad information återfinns i studiehandledningen.
Om det finns särskilda skäl, och om det med hänsyn till det obligatoriska momentets karaktär är möjligt, får examinator besluta att ersätta det obligatoriska momentet med en annan likvärdig uppgift.
Om LiU: s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det.
Om koordinatorn har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.
Examinator får också besluta om anpassad examination eller alternativ examinationsform om examinator bedömer att det finns synnerliga skäl och examinator bedömer det möjligt utifrån kursens mål.
Studerande, vars examination underkänts två gånger på kursen eller del av kursen, har rätt att begära en annan examinator vid förnyat examinationstillfälle.
Den som godkänts i prov får ej delta i förnyat prov för högre betyg.
Betygsskala
ECTS, ECÖvrig information
Planering och genomförande av kurs ska utgå från kursplanens formuleringar. Den kursvärdering som ska ingå i varje kurs ska därför behandla frågan om hur kursen överensstämmer med kursplanen.
Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.
Om det föreligger synnerliga skäl får rektor i särskilt beslut ange förutsättningarna för, och delegera rätten att besluta om, tillfälliga avsteg från denna kursplan.
Institution
Institutionen för datavetenskapKod | Benämning | Omfattning | Betygsskala |
---|---|---|---|
INL2 | Inlämningsuppgifter | 1 hp | EC |
TEN1 | Tentamen | 5 hp | EC |
Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.
Det finns inga filer att visa.