Advanced Machine Learning, 6 hp
Advanced Machine Learning, 6 credits
732A96
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåKurstyp
Fristående- och programkursExaminator
Jose M PenaKursansvarig
Jose M PenaStudierektor eller motsvarande
Ann-Charlotte HallbergTillgänglig för utbytesstudenter
JaKontaktinformation
Isak Hietala
Kostas Mitropoulos
Kursen ges för | Termin | Veckor | Språk | Ort/Campus | VOF | |
---|---|---|---|---|---|---|
Fristående kurs (Halvfart, Dagtid) | HT 2018 | 201835-201844 | Engelska | Linköping, Valla | ||
Fristående kurs (Halvfart, Dagtid) | HT 2018 | 201835-201844 | Engelska | Linköping, Valla | ||
F7MSG | Statistics and Data Mining, Master´s Programme | 3 (HT 2018) | 201836-201842 | Engelska | V |
Huvudområde
StatistikUtbildningsnivå
Avancerad nivåFördjupningsnivå
A1XKursen ges för
- Master´s Programme in Statistics and Data Mining
Förkunskapskrav
Kandidatexamen i något av följande ämnen: statistik, matematik, tillämpad matematik, datavetenskap, teknik eller motsvarande examen. Utöver detta, erfordras godkända/avklarade kurser i kalkyl, linjär algebra, statistik och programmering.
Studenten ska också ha följande kurser godkända: en kurs i Bayesian Learning om minst 6 hp; en kurs i datorintensiva statistiska metoder om minst 6 hp, eller motsvarande kurser. Dokumenterade kunskaper i engelska motsvarande Engelska B/Engelska 6.
Lärandemål
Efter avslutad kurs skall den studerande på en avancerad nivå kunna:
- redovisa relevanta maskininlärningsprinciper som används inom Bayesiansk tradition av maskininlärning,
- föreslå en lämplig probabilistisk modell som beskriver datastruktur och priorn,
- jämföra mellan modellerna för att välja ut den bästa modellen,
- implementera maskininlärningsmodellerna i ett programmeringsspråk och också använda vanliga maskininlärningspaket för att göra inferens i en modell, göra prediktioner som grundar på denna modell och skatta osäkerhet av dessa prediktioner.
Kursinnehåll
Kursen innehåller flera avancerade metoder inom maskininlärning som genomför modellering av komplexa fenomen och kan prediktera utfall av dessa fenomen.
Följande ämnen är inkluderade i kursen:
- introduktion till Bayesiask teori: Likelihood, apriori och aposteriori fördelning, marginal likelihood, posterior prediktiv fördelning,Genererande och diskriminerande modeller,
- Gaussiska processer,
- State-space modeller,
- Kalman filtering och utjämning,
- partikelmetoder,
- Markov modeller och gömda Markov modeller,
- grafiska modeller såsom Bayesianska nätverk och Markov slumpfält.
Undervisnings- och arbetsformer
Kursen består av föreläsningar, datorövningar och seminarier som kompletteras med självstudier. Föreläsningarna ägnas åt genomgång av teori, koncept och metodik. Datorövningarna ägnas åt praktisk dataanalys i en med hjälp av maskininlärningsmjukvara. Seminarier ägnas åt studentpresentationer och diskussioner av uppgifter.
Undervisningsspråk: engelska.
Examination
Skriftlig redovisning av labbuppgifter. Aktivt deltagande i seminarierna. En skriftlig tentamen. Detaljerad information återfinns i studiehandledningen.
Studerande, vars examination underkänts två gånger på kursen eller del av kursen, har rätt att begära en annan examinator vid förnyat examinationstillfälle.
Den som godkänts i prov får ej delta i förnyat prov för högre betyg.
Betygsskala
ECTS, ECInstitution
Institutionen för datavetenskapDet finns inga examinationsmoment att visa.
Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.
Det finns inga filer att visa.