Maskininlärning för samhällsvetenskap, 7.5 hp
Machine Learning for Social Science, 7.5 credits
771A42
Huvudområde
Computational Social ScienceUtbildningsnivå
Avancerad nivåKurstyp
Fristående kursExaminator
Martin ArvidssonKursansvarig
Martin ArvidssonStudierektor eller motsvarande
Erik LissTillgänglig för utbytesstudenter
JaKontaktinformation
Claudia Schmid
Jonas Johansson, study adviser
Madelene Töpfer, course administrator
Martin Arvidsson, course director
Kursen ges för | Termin | Veckor | Språk | Ort/Campus | VOF | |
---|---|---|---|---|---|---|
Fristående kurs (Helfart, Dagtid) | HT 2024 | 202439-202443 | Engelska | Norrköping | ||
Fristående kurs (Helfart, Dagtid) | HT 2024 | 202439-202443 | Engelska | Norrköping |
Huvudområde
Computational Social ScienceUtbildningsnivå
Avancerad nivåFördjupningsnivå
A1NFörkunskapskrav
- 180 hp godkända varav 90 hp inom något av områdena humaniora, samhällskunskap, kulturvetenskap, beteendevetenskap, naturvetenskap, datorvetenskap eller ingenjörsvetenskap
- 15 hp godkända inom ett eller flera av följande ämnen:
Statistik
Matematik
Datavetenskap - Engelska 6
Undantag ges för svenska
Lärandemål
Efter avslutad kurs ska den studerande på avancerad nivå kunna:
- använda begrepp och metoder inom maskininlärning för att formulera och lösa praktiska problem av relevans för samhällsvetenskaplig forskning
- använda statistisk programvara för att estimera maskininlärningsmodeller, utvärdera deras anpassningsgrad, välja deras parametrar och tolka deras resultat
- beskriva olika maskininlärningsmetoders styrkor och svagheter
- redogöra för vilka maskininlärningsmodeller som är lämpliga för särskilda tillämpningar
- jämföra maskininlärningsverktyg med traditionella statistiska metoder, identifiera problem som bäst lämpar sig för maskininlärning och problem där de två kan komplettera varandra
Kursinnehåll
I kursen ges en översikt över de viktigaste begreppen och metoderna inom maskininlärning (ML) som är relevanta för samhällsvetenskaplig forskning. Först ges en allmän introduktion till ML, där grundläggande idéer granskas och kontrasteras mot traditionell statistik. Sedan introduceras centrala tekniker inom övervakad inlärning (t.ex. beslutsträd) och oövervakad inlärning (t.ex. k-means). I datorlaborationer lär sig studenterna hur man använder dessa tekniker i statistisk programvara för att lösa praktiska problem av relevans för samhällsvetenskaplig forskning. I kursen behandlas även hur maskininlärning kan bidra till kausal inferens.
Undervisnings- och arbetsformer
Undervisningen sker i form av föreläsningar och interaktiva datorlaborationer. Utöver detta ska den studerande utöva självstudier.
Undervisnings- och examinationsspråk: engelska.
Examination
Kursen examineras genom
- aktivt deltagande i datorlaborationer, betygsskala: EC (Pass/Fail)
- individuell datortentamen, betygsskala: EC
För godkänt betyg (E) på kursen krävs minst E på den individuella datortentamen samt Pass på datorlaborationerna. Högre slutbetyg på kursen bestäms av betyget på den individuella datortentamen.
Detaljerad information om examinationen finns i kursens studieanvisning.
Om det finns särskilda skäl, och om det med hänsyn till det obligatoriska momentets karaktär är möjligt, får examinator besluta att ersätta det obligatoriska momentet med en annan likvärdig uppgift.
Om LiU: s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det.
Om koordinatorn har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.
Examinator får också besluta om anpassad examination eller alternativ examinationsform om examinator bedömer att det finns synnerliga skäl och examinator bedömer det möjligt utifrån kursens mål.
Studerande, vars examination underkänts två gånger på kursen eller del av kursen, har rätt att begära en annan examinator vid förnyat examinationstillfälle.
Den som godkänts i prov får ej delta i förnyat prov för högre betyg.
Betygsskala
ECTS, ECÖvrig information
Planering och genomförande av kurs ska utgå från kursplanens formuleringar. Den kursvärdering som ska ingå i varje kurs ska därför behandla frågan om hur kursen överensstämmer med kursplanen.
Kursen bedrivs på ett sådant sätt att likvärdiga villkor råder med avseende på kön, könsöverskridande identitet eller uttryck, etnisk tillhörighet, religion eller annan trosuppfattning, funktionsnedsättning, sexuell läggning och ålder.
Om det föreligger synnerliga skäl får rektor i särskilt beslut ange förutsättningarna för, och delegera rätten att besluta om, tillfälliga avsteg från denna kursplan.
Institution
Institutionen för ekonomisk och industriell utvecklingKod | Benämning | Omfattning | Betygsskala |
---|---|---|---|
LAB1 | Laboration | 3.5 hp | EC |
EXA1 | Slutgiltig tentamen | 4 hp | EC |
Böcker
Digital copy available for free at: https://www.statlearning.com/
Ladda ner
Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida. Klicka på filen för att spara ner och öppna den.
Namn | Filnamn | Beskrivning |
---|---|---|
Reading list ML | Reading list ML.pdf |