Matematik: Matematikdidaktik 2, 3 hp
Mathematics: Mathematics Education 2, 3 credits
91MA39
Huvudområde
MatematikUtbildningsnivå
GrundnivåKurstyp
ProgramkursExaminator
Peter FrejdKursansvarig
Peter FrejdStudierektor eller motsvarande
Mikael LangerKursen ges för | Termin | Veckor | Språk | Ort/Campus | VOF | |
---|---|---|---|---|---|---|
L2A79 | Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång matematik, 240 hp (Ingång matematik) | 2 (VT 2025) | 202504-202523 | Svenska | Linköping, Valla | V |
Huvudområde
MatematikUtbildningsnivå
GrundnivåFördjupningsnivå
GXXKursen ges för
- Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9
Förkunskapskrav
Grundläggande behörighet på grundnivå, Samhällskunskap 1b alternativt Samhällskunskap 1a1 + 1a2 Matematik 4 eller Matematik D.
Lärandemål
Efter avslutad kurs skall den studerande kunna
- resonera och redogöra för elevers föreställningar om och sätt att tillägna sig grundläggande matematiska begrepp och färdigheter inom algebra, sannolikhetslära och statistik genom att söka, granska, sammanställa och reflektera över skolrelevant forskning inom matematikens didaktik
- beskriva, analysera och reflektera kring olika aspekter av matematisk problemlösning och dess betydelse för undervisning och lärande i matematik
- beskriva, analysera och jämföra några centrala teoretiska perspektiv och begrepp inom matematikens didaktik och dess konsekvenser för undervisningspraktik
- utifrån aktuella läro- och kursplaner kunna redogöra för och analysera det matematiska innehåll som utgör grund för undervisningsplanering
- redogöra för och analysera barns och ungdomars föreställningar om och sätt att tillägna sig grundläggande matematiska begrepp och färdigheter
- beskriva, dokumentera och bedöma elevers kunskaper och kommunikation i matematik
- formulera relevanta problemställningar som grund för vetenskapligt inriktat arbete i matematikdidaktik och kunna bearbeta och analysera insamlat empiriskt material med utgångspunkt i sådana problemformuleringar.
Kursinnehåll
I kursen arbetar den studerande med matematiska resonemang, bevis och ämnesdidaktiska analyser samt med begreppsförståelse och färdigheter inom algebra, analys, sannolikhetslära och statistik med koppling till matematikdidaktisk forskning. Den studerande arbetar också med olika aspekter av matematisk problemlösning samt sätter sig in i teoretiska perspektiv på undervisning och lärande i matematik med tillämpning i undervisningspraktik: skolans kursplan i matematik; organisation, planering och uppföljning av undervisning; elevers uppfattning och utveckling av matematiska begrepp och färdigheter; bedömning av kunskap i matematik; elever med särskilda behov i matematik; arbetsformer och laborativa/tekniska hjälpmedel; matematikdidaktisk forskning som berör skolans matematikutbildning.
Undervisnings- och arbetsformer
Föreläsningar, seminarier och självständiga studier.
Examination
Gäller för alla kurser oavsett betygsskala.
- Studerande som underkänts två gånger på kursen eller del av kursen har rätt att begära en annan examinator vid förnyat examinationstillfälle.
Om kursen har tregradig betygsskala (U – VG) gäller följande:
- Studerande som godkänts i prov får ej delta i förnyat prov för högre betyg.
För kurser där obligatoriska moment ingår gäller följande:
- Om det finns särskilda skäl, och om det med hänsyn till det obligatoriska momentets karaktär är möjligt, får examinator besluta att ersätta det obligatoriska momentet med en annan likvärdig uppgift.
Om LiU: s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det.
Om koordinatorn har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.
Examinator får också besluta om anpassad examination eller alternativ examinationsform om examinator bedömer att det finns synnerliga skäl och examinator bedömer det möjligt utifrån kursens mål.
Betygsskala
Tregradig skala, U, G, VGÖvrig information
Kursen reviderad 2020-04-02; Dnr LiU-2020-01361Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som skall ingå i varje kurs skall därför behandla frågan om hur kursen överensstämmer med kursplanen.
Kursen bedrivs på ett sådant sätt att likvärdiga villkor råder med avseende på kön, könsöverskridande identitet eller uttryck, etnisk tillhörighet, religion eller annan trosuppfattning, funktionsnedsättning, sexuell läggning och ålder.
Om det föreligger synnerliga skäl får rektor i särskilt beslut ange förutsättningarna för, och delegera rätten att besluta om, tillfälliga avsteg från denna kursplan.
Om undervisnings- och examinationsspråk
Undervisningsspråk visas på respektive kurstillfälle på fliken "Översikt". Examinationsspråk relaterar till undervisningsspråk enligt nedan:
- Om undervisningsspråk är svenska ges kursen i sin helhet eller till stora delar på svenska. Observera att även om undervisningsspråk är svenska kan delar av kursen ges på engelska. Examinationsspråk är svenska.
- Om undervisningsspråk är svenska/engelska kan kursen i sin helhet ges på engelska vid behov. Examinationsspråk är svenska om kursen ges på svenska eller engelska om kursen ges på engelska.
- Om undervisningsspråk är engelska ges kursen i sin helhet på engelska. Examinationsspråk är engelska.
Institution
Matematiska institutionenKod | Benämning | Omfattning | Betygsskala |
---|---|---|---|
MRE2 | Muntlig redovisning med skriftligt underlag: Ämnesdid analys | 1 hp | U, G |
MRE1 | Muntlig redovisning: Ämnesdidaktik | 1 hp | U, G |
SRE1 | Skriftlig redovisning: Ämnesdidaktik | 1 hp | U, G, VG |
Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.
Det finns inga filer att visa.